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Abstract. To describe the energy balance in the L-mode, the model containing the critical gradient is widely 
used. This so-called “first” critical gradient can be found in particular by the canonical profile for the 
temperature. For regimes with transport barriers we use the idea of the “second” critical gradient. If the pressure 
gradient exceeds the second critical gradient inside some plasma region, then the bifurcation to the new state is 
happened in this region with the formation of the transport barrier. This idea is realized in the modified canonical 
profiles model, suitable for the energy and particle balance simulation in tokamaks with arbitrary aspect ratio and 
plasma cross section. To choose the value of the second critical gradient, we compare the calculation results for 
several shots with experimental data. The connection of this gradient with the magnetic shear, s, is found. We 
obtained the following criterion of the transport barrier formation:(a2 /r) d/dr ln(p/pc) > z0(r), where r is a radial 
coordinate, а is a minor radius of plasma, p and pc are the plasma pressure and the canonical profile of the 
pressure, z0(r) = C0 + С1s is the dimensionless function, which determines the “distance” between the first and 
the second critical gradients. C0i ~ 1, C0e ~ 3, C1i,e ~ 2. Calculations have shown that this criterion is close to the 
experimental one obtained in JET. The constructed model was used for the simulation of the internal transport 
barriers in JET, TFTR, DIII-D and MAST. The possible dependence of the second critical gradient on plasma 
parameters is discussed also.  
 
1. Introduction 
 
To describe the energy balance in the L-mode, the models containing the critical gradients are 
widely used. These so-called “first” critical gradients can be found in particular by the 
canonical profile theory [1]. If the temperature and density gradients exceed the first critical 
gradients then the transport rises sharply due to the excitation of drift modes and increase of 
turbulent transport coefficients. In this state, the profiles of the temperature and pressure are 
close to the canonical ones and well conserved under any external actions (the profile 
consistency principle).  
 
In this Report, to describe the regimes with Internal Transport Barriers (ITB) we use the idea 
of the “second” critical gradient. If the pressure gradient exceeds the second critical gradient 
inside some plasma region then the drift turbulence in this region is suppressed and the 
bifurcation to the new state occurs with the transport barrier formation. The plasma as if 
“forgets” the canonical profile inside the transport barrier. 
 
The idea of the second critical gradient is realized in the canonical profiles transport model 
(CPTM), suitable for the energy and particle balance simulation in tokamaks with arbitrary 
aspect ratio and plasma cross-section. The model consists of a set of equations relative to the 
electron and ion temperatures, Te, Ti, plasma density n and the potential of the poloidal 
magnetic field ψ. The equilibrium and the radial coordinate ρ are found by the solution of the 
Grad-Shafranov equation.  
 
The first critical gradient is defined by the canonical profiles theory. The canonical profile for 
the function µ = 1/q (denoted below as µс) can be found by the solution of the Euler equation  
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for the free plasma energy functional [1]  

ρ2G ∂µc
2/∂ρ + (λ/2) ∂/∂ρ ((1/ V′) ∂⁄∂ρ(V′Gρµc)) = C ρµc′/V′   (1) 

The solution of Eq. (1) and the constants С and λ are determined by the following boundary 
conditions:  
 µc(0) = µ0 ~ 1,   µc′(0) = 0,   µc(ρmax) = µS,   X ≡ [ic/(2G µc)]S = µS /µ0  (2)  

Here index S means the plasma boundary, iс = 1/V′ ∂/∂ρ(G V′ρµс) is the dimensionless current 
density, V is the plasma volume, V′= ∂V/∂ρ, G = R2<(grad ρ)2/r2> is the metric coefficient. 
The first dimensionless critical gradients for the temperature and density are as follows: 

ΩTc = R/LTc ≡ -RTc′/Tc = - 2/3 R ic′/ic, Ωnc ≡ -Rnc′/n = - 1/3 R ic′/ic.  (3)  

Now let us consider the expressions for the heat and particle fluxes, Γα (α = e,i), Γn: 

Γα = καTα/R (ΩTα-ΩTc) H(ΩTα-ΩTc) Fα - κ0α ∂Tα/∂ρ + 3/2 ΓnTα (α = e,i) (4) 

Γn = Dnn/R (Ωn-Ωnc) FeFi - D0κ0α ∂n /∂ρ,      (5)  

where ΩTα = -RTα′/Tα, Ωn = -R n′/n, κα, κ0α, Dn, D0 are the heat diffusivity and particle 
diffusion coefficients [2]. The Heaviside function H(x) in (4) describes an absence of heat 
pinch: H(x) = 1 (x>0), H(x) = 0 (x<0). The functions Fe, Fi (the forgetting factors) describe the 
bifurcation with the transport barriers formation. To determine these functions, we introduce 
the deviation of the partial pressure profile from the canonical one: 

zpα = zpα(ρ) = (ρmax/ρ) (Ωpα - Ωpc) /A,  (α = e,i)   (6)  

where Ωpα = -(R/pα) ∂pα/∂ρ, Ωpc = –R ic′/ic, A = R/a is the aspect ratio. In our model the 
transport barrier is formed inside some region, if the value of zpα(ρ) exceeds the distance 
between the first and second critical gradients, z0α(ρ), in this region: 

 zpα(ρ) > z0α(ρ)         (7)  

To describe the bifurcation, the functions Fe и Fi can be chosen as follows:  

Fα = exp[-zpα
2/(2(z0α)2)]       (8) 

It is seen that Fα << 1 inside the barrier and Fα ~ 1 outside it. To choose the value of z0α, we 
compare the calculation results with experimental data. This choice of z0α is discussed below. 
It will be shown also that the criterion (7) for devices with moderate and tight aspect ratio is 
close to the experimental one  

 ρs/LT > ρ*
ITB ,  ρ*

ITB(JET) = 0.014      (9) 

obtained in JET [3]. The links of heat fluxes with temperature gradients and the values of zpα 
and z0α are shown in Fig. 1. To describe experiments with ITB in the devices with low and 
conventional aspect ratio, we modify the transport model proposed in [4].  
 
2. Modification of the CPTM  
 
2.1. Modified boundary condition for the canonical profile  
 
The boundary conditions (2) are used to distinguish the Kadomtsev’s-type solution and the 
other solutions of Eq. (1). In such a way we call the solution of Eq. (1), for which the ratio 
ic′/ic has a regular behaviour at the plasma edge. Note, that this ratio is defined through the 
first and second derivatives of the function µc(ρ). Since the critical gradient is proportional to 
ic′/ic, for the Kadomtsev’s-type solution, the critical gradient is also regular at the edge.  
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The problem of the Kadomtsev’s-type solution for tokamaks with low aspect ratio A=R/a is 
rather difficult, because the metric coefficient G (included in Eq. (1)) has very irregular 
behaviour at the plasma periphery. Figure 2 shows the profiles of G in tokamaks with various 
aspect ratios and moderate values of the edge safety factor q. For all cases G(0) ~1, but for 
A=1.5 the value of G rapidly increases at the edge and attains the level of 10-15 for the 
plasma with rather high elongation. In this case the using of the boundary condition (2) for X 
results in a very irregular behaviour of ic′/ic. To distinguish the Kadomtsev’s-type solution, we 
introduce the modified boundary condition instead of the last equality in (2) 

 X ≡ [ic/(2G µc)]S = f(Ga) µS /µ0 ,   f(Ga) = (Ga)
α,  α = 0.4 – 0.6.  (10)  

The calculations show that the µc(ρ) profile itself is only slightly changed, but the value of 
ic′/ic becomes regular at the edge. Figure 3 presents the profiles of the critical gradient  
ΩTc= -RTi′/Ti = -2/3 R ic′/ic for the cases f(Ga) = 1 and f(Ga) = (Ga)

1/2. We see that the 
boundary condition (10) regularizes well the behaviour of the critical gradient. The 
comparison of the first critical gradients in three devices with different aspect ratios (T-10, 
JET and MAST) is carried out in Fig. 4. For Т-10 and JET the factor f(Ga) is slightly differs 
from unity, and the boundary conditions (2) and (10) are close to each other.  
 
2.2. Modified transport model  
 
In our papers [5, 6] to simulate ITB in JT-60U, we used the piecewise-linear functions for 
z0α(ρ): 

 z0α = C0α     0<ρ<ρ0  
 z0α = C0α + C1α (ρ - ρ0)/ (1 - ρ0)   ρ0<ρ<1,   (11)  

which contains two pairs of constants C0α and C1α for electrons (α = e) and for ions (α = i) 
correspondingly and the constant ρ0. These constants were defined by comparison with 
experiment in JET, DIIID and JT-60U. The values of z0α really define the magnitude of the 
second critical gradient to be overcome for the ITB formation. Note that the functions (11) are 
not linked with some physical parameters of the plasma.  
 
It is well known that the negative shear helps to the formation of ITB. Therefore in our new 
model we suppose 

z0α = C0α + C1αs ,        (12)  

where s = ρ/q ∂q/∂ρ is the magnetic shear. If the shear is positive, the spatial behaviour of 
functions (11) and (12) is similar: they monotonically grow. However, if the shear is negative, 
the function (12) may have a minimum, in the vicinity of which the bifurcation of solutions of 
transport equations is alleviated. Physically, this alleviates the ITB formation. Behaviour of 
functions z0α(ρ) with negative shear is shown in Fig. 5. 
 
In our calculations we use the expression (12). Really we solve the inverse problem relative to 
the parameters C0α and C1α, comparing the calculation results with experimental data in the 
chosen shot. To validate the model, we compare the results obtained for different devices with 
the criterion (9) and make conclusions about the applicability of this criterion. The 
experimental data for JET, TFTR and DIII-D are taken from the ITER Database [7]. For 
MAST we used the ITER Database, MAST Database and Report [8].  
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3. Simulation of the JET shot #40847 
 
Figure 6 shows the time behaviour of calculated and experimental values of the central ion 
and electron temperatures. The profiles of ion and electron temperatures at t = 46 sec are 
drawn in Fig. 7. Figure 8 shows the corresponding profiles of the heat diffusivities and 
density diffusion coefficient. It is well seen that all transport coefficient are very small in the 
gradient region. The comparison of the values of ρs/LTi for model calculations and experiment 
is carried out in Fig. 9. The sharp folds at the edges of the i-ITB are seen. At these points both 
in calculation and experiment ρs/LTi ~ 0.01, that is slightly less than criterion (9).  
 
4. Simulation of the TFTR shot #94607  
 
Figures 10-11 show the calculated and experimental profiles of temperatures Ti, Te and 
density n. The calculated profiles of ρs/LTi for t = 2.11 sec and 2.23 sec and experimental one 
for t =2.23 sec are shown in Fig. 12. It is seen that ρ*

ITB(TFTR) ~ 0.008 that almost 2 times 
less than criterion (9). The calculated i-ITB width ∆ITB = ~0.2a is very close to the 
experimental one. The n-ITB (in the density channel) is clearly seen in Fig. 11, although there 
is a moderate difference between experimental and calculated density profiles.  
 
5. Simulation of the DIIID shot #89943 
 
Figure 13 shows the calculated and experimental profiles of temperatures Ti and Te for t = 1.7 
sec. The calculated profiles of ρs/LTi for t = 1.6 and 1.7 sec and experimental one for t =1.7 
sec are shown in Fig. 14. At the outermost edge of the i-ITB, ρs/LTi ~ 0.011 that is close to 
criterion (9). 
 
6. Simulation of the MAST shot #8575  
 
In Figures 15-16 the calculated and experimental profiles of ion and electron temperatures at 
the time instants t = 0.15 and 0.2 sec are shown. The profile of the total absorbed power from 
two NB injectors was taken from MAST Database, which contains also the calculation results 
by the TRANSP code. To the instant t = 0.2 sec, the total value of the absorbed power equals 

to P abs
NB =1.5 MW. The redistribution of the absorbed power between ions PNBi and electrons 

PNBe was calculated by the usual asymptotic expressions [9]. Figure 17 shows the profiles of 
the effective heat diffusivities, χi and χe, for ions and electrons. The ion transport barrier i-
ITB is clearly seen. Its relative width ∆ITB = ∆ρ/a ~ 0.35 reaches one-third of the plasma 
radius.  
 
The calculated profiles of ρs/LTi for three time instants t = 0.1, 0.15 and 0.2 sec and the 
experimental one for t=0.2 sec are shown in Fig. 18. The criterion (9) is drawn also in this 
Figure. It is seen that there is a systematic excess of the transport barrier borders over the JET 
criterion (9): ρ*

ITB(MAST) ≈ (1.5-1.8) ρ*
ITB(JET) = 0.021-0.024.  

 
7. Comparison of results obtained for different devices  
 
The optimal values of the model parameters and values of other parameters characterizing the 
ITBs for four different devices are gathered in Table I. It is seen that the parameters C0i and 
C1i, which define the i-ITB are approximately the same for all considered devices. Also the 
values of χi inside ITB are the same for large devices with conventional aspect ratio A ~ 3.  
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TABLE I 
Device 
and shot 

C0i  C1i C0e  C1e χi inside ITB 
(m2/s) 

∆ITB/a 
model/expt 

ρ*
ITB 

JET 
#40847 

1 2 5 2 0.24 0.2/0.33 0.010 

TFTR 
#94607 

1.5 2 4  0.2 0.2 0.006 

DIIID 
#89943 

1 2 4  0.22 0.45 0.015 

MAST 
#8575 

1 2 >3 2 0.6  0.34 0.022 

 
8. Conclusions 
 
In this Report to describe the internal ITB we propose the modified Canonical profiles 
transport model. The model includes several parameters, which have been found by the 
comparison with experiment. The simulation of the shots from four devices is carried out. The 
model describes well the ion and electron temperature profiles including the ion-ITB. The 
comparison of the calculation results with JET ITB-criterion has shown that the value of ρ*ITB 
for different shots can differ in moderate range, 0.006< ρ*ITB < 0.022. The model includes the 
main feature of the ITBs: the negative shear diminishes the threshold power needed for the 
ITB formation. As a result, the proposed model is a predictive one for conventional tokamaks. 
It needs the additional experimental data to validate the model and make it more reliable for 
spherical tokamaks.  
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FIG. 1. The links of heat fluxes with temperature 
gradients and with values of zp and z0. 

FIG. 2. Metric coefficient G in various 
devices. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIG. 3. Profiles of the critical gradient in MAST for 
old and new boundary conditions (2) and (10). 

FIG. 4. Relative critical gradients of 
electron temperature in various devices. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIG. 5. Radial profile of second critical 
gradient in scenario with negative shear  

FIG. 6. Time evolution of calculated and experimental 
values of the central ion and electron temperatures in JET. 
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FIG. 7. The profiles of electron and ion 
temperatures in JET. 

FIG. 8. The profiles of ion and electron heat 
diffusivities and particle diffusion in JET. 

 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIG. 9. The experimental and model ratios of ion sound velocity 
to characteristic length of ion temperatureρs/LTi in JET. 
Horizontal line shows the criterion (9)   

FIG.10. The profiles of ion and 
electron temperatures in TFTR. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIG. 11. The profiles of electron 
density in TFTR. 
 

FIG. 12. The experimental and model ratios of ion sound 
velocity to characteristic length of ion temperatureρs/LTi in 
TFTR. Horizontal line shows the criterion (9).  
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FIG. 13. The profiles of ion and 
electron temperatures in DIII-D. 

FIG. 14. The experimental and model ratios of ion sound 
velocity to characteristic length of ion temperatureρs/LTi in 
DIII-D. Horizontal line shows the criterion (9) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIG. 15. The profiles of ion temperatures in 
MAST.  

FIG. 16. The profiles of electron temperatures 
in MAST. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIG. 17. The profiles of the 
effective heat diffusivities, χi and 
χe, for ions and electrons in MAST. 

FIG. 18. The experimental and model ratios of ion sound 
velocity to characteristic length of ion temperatureρs/LTi in 
MAST. Horizontal line shows the criterion (9) 
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