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Abstract. Transport barriers are of fundamental interest in fusion research because of the improved confinement
they provide, and because they can uncover intrinsic electron transport physics, such as electron temperature
gradient (ETG) turbulence. We present recent developments on the generation and stability of extended structures
in ETG turbulence. These structures allow the electron thermal transport to exceed the ETG mixing length level,
which is too small to be physically relevant. We also present work relevant to the case in which the ρi-scale
turbulence has not been completely suppressed, via a self-consistent theory of interactions between ETG and
drift-ion temperature gradient (DITG) turbulence.

1. Introduction

Understanding the underlying physics mechanism of turbulent transport in magnetic
confinement devices is crucial to developing confidence in transport models used to predict
the behavior of current and next-step devices.  Two areas of intense investigation in recent
years has been the possibility of electron temperature gradient (ETG) driven electron thermal
transport due to the formation of large-scale structures such as streamers, and the physics of
transport barrier formation and dynamics.  In this paper we overview some recent progress in
the area of ETG dynamics; issues related to transport barriers will be discussed elsewhere.

2. Structure Formation and Collapse in ETG Turbulence

Central to the question of the role of ETG turbulence is understanding the physics of
streamers [1-4] and other large-scale coherent structures, particularly what sets their spatial
dimensions. The question of streamer formation also represents a specific example of pattern
selection and formation in nonlinear systems. In order to investigate this question, the
stability of small-scale ETG turbulence to different modulations has been examined. The ETG
turbulence is described by a simple fluid model [5,6]
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∂t 1−∇⊥
2( )φ +∂ y φ + p( )− φ,∇⊥

2φ{ } ≈ 0 (1)
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∂t p − r∂yφ + φ, p{ } ≈ 0 (2)

where standard normalizations have been used [7], and the Poisson brackets
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which we restrict ourselves to consideration of modulations of a monochromatic waves i.e.

waves of the form 
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˜ φ =Φ
v 
X ,T( )ei

v 
k ⋅ ˜ x −ω˜ t ( ) +  c.c. (where tildes denote fast scales and X , T

represent large-scale variations), and derivation of evolution equations for a slowly-varying
potential and pressure fields
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Taking the streamer limit 

€ 

∂X → 0 , and neglecting the slow time-dependence terms (similar to
sub-sonic Langmuir turbulence), one can combine the above equations with the Eqns. 1 and 2
to obtain an evolution equation for the complex wave amplitude
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(6)

Eqn. 5 is a derivative nonlinear Schrödinger equation (DNLS) [9], with cubic second derivative
nonlinearity.  The nonlinearity is can be attractive (self-focusing) or repulsive depending upon
the sign of α/β.  Solutions of Eqn. 5 for different parameter regimes have been examined, and
are discussed in more detail in Ref. [7].

It is particularly useful to observe that Eqn. 5 can be rescaled and shown to have a
Hamiltonian structure of the form

€ 

H = ∂YΦ
2
−
1
2
∂Y Φ

2( )( )
2 

  
 

  
dY∫ (7)

 (for α/β > 0). Defining the variance 

€ 

V = dY Φ 2Y 2∫ , the virial theorem [9] can be used to

show

€ 

d2V
dt 2

= 8H − 2 dY ∂Y Φ
2( )( )

2

∫ (8)

Noting that the total Hamiltonian H is conserved, Eqn. 8 predicts that the width of the
streamer vanishes infinite time (for negative Hamiltonians). Combined with the fact that the

total intensity 

€ 

I = dY Φ 2∫  will also be conserved, one can conclude that as the width of the
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streamer approaches zero, the amplitude must diverge! Thus, there exists an inherent tendency
for streamers to collapse to extended singular shear flow layers.

The analysis above assumes purely one-dimensional poloidal variations.  More directly
relevant is the general two-dimensional modulation instability of a small-scale ETG mode with
predominately poloidal wavenumber (e.g. the modulational stability of linear ballooning mode
with ky >> kx).  More importantly, if one is interested in determining the radial extent of a
streamer, there should be no a priori assumptions about scale separation in the radial
direction.  An analysis analogous to the one-dimensional case can be undertaken for the case of
a two dimensional modulation, assuming a wave train of the form

€ 

˜ φ =Φ x,Y , ˜ t ,T( )ei ky ˜ y −ω˜ t ( ) +  c.c., and an isotropic modulation (

€ 

∂X ~ ∂Y ), which leads to a two-

dimensional amplitude equation
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with βy = β from the one dimensional case, and 
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βx = 1 2( )∂ 2ω ∂kx
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2( )ω − ky( ) .

Eqn. 9 can be rescaled via 

€ 

X→ X βX ,  Y →Y βY ,  Φ→ ky α βX( )Φ,  and Φ→Φ*  if βy <

0, and then shown to have a total conserved Hamiltonian of the form
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+ ∂YΦ
2

+
σ
2
∂X Φ

2( )( )
2 

  
 

  
dXdY∫ (11)

where σ = sign(α/β). σ = -1 corresponds to an attractive nonlinearity, and σ  = +1 to a
repulsive one.  To study the elongation and anisotropy of the modulation dynamics, we define

the variances 

€ 

VX = dXdY Φ 2X 2∫  and 

€ 

VY = dXdY Φ 2Y 2∫ . Equations for the total variance

and anisotropy can the be derived, and shown to be
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d2 Vx −VY( )
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= 8H −16 dXdY∫ ∂YΦ
2

(13)

If H < 0 (possible for σ = -1), then the total variance V goes to zero in a finite time, and so
collapse remains a possibility in the two-dimensional case.  However, in this case, the
anisotropy measure Vx – Vy is also negative.  Since the analysis assumed an initially isotropic
modulation, this results suggests that in the final state, Vx << Vy!  Therefore, it appears that in
the two-dimensional case, collapse to zonal flows over streamers is preferred in ETG
turbulence!  Recent numerical work [10] provides evidence for this conclusion.  While zonal
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flows are known to grow more slowly in ETG than ion-temperature gradient (ITG) turbulence
[11,12], they are observed to continuously grow in amplitude, while streamer effects are not
observed to significantly enhance transport in the time-asymptotic state.  Note that this result
implies that one should not take the linear mode structure (assumed to be radially extended) as
a good indicator of the final (an)isotropy of the system.  Ongoing work is investigating
saturation scales and levels of the collapse, and suggests that the final radial scale of the zonal
flows may be 

€ 

ΔX ~ ρe
3/4Ln

1/4  [13].

3. ETG Interaction with Drift-ITG Turbulence Dynamics

One of the key recent developments in studies of electron thermal transport has been the
invocation of ETG turbulence as the source of anomalous electron thermal transport outside
of ion transport barriers [14,15], where drift-ion temperature gradient (DITG) turbulence
[16,17] is believed to be unstable and to be the primary driver of all anomalous transport,
including electron thermal transport. Here, we term this larger-scale (ρi vs. ρe) turbulence as
drift-ion temperature gradient rather than simply ion temperature gradient to make explicit
that we are including both the long-wavelength (kρi < 1) curvature-driven component, as well
as the somewhat shorter wavelength component (kρi ~ 1) of the spectrum which is heavily
influenced by kinetic effects such as trapped electrons. Taking ETG turbulence as the
dominant driver of electron thermal transport in the bulk of the plasma where DITG
turbulence is present represents a fundamental conceptual shift, as it implicitly suggests that
ETG turbulence not only drives experimentally relevant levels of electron thermal transport,
but dominates over the DITG turbulence which was previously presumed to drive sufficient
electron thermal transport to explain the observed levels. Given that the proposed
mechanisms by which ETG turbulence generates transport at levels greater than the expected
gyroBohm level involve formation of structures much greater than the characteristic ρe scale
(e.g. streamer formation or inverse cascade to the collisionless skin depth δe = c/ωpe), it is
important to investigate the dynamics of ETG turbulence, and in particular, these large-scale
structures, in the presence of DITG turbulence.

3.1 Random Shear Suppression of ETG Turbulence by DITG Turbulence

In order to elucidate the effects of DITG turbulence on ETG turbulence, we have studied the
suppression of ETG turbulence due to random two-dimensional shearing by DITG
turbulence. We exploit the difference in space and timescales between the ETG and DITG (ρe

vs. ρi and vTe/Ln vs. vTi/Ln, respectively) to describe the evolution of the ETG turbulence in

terms of an adiabatic invariant (the potential enstrophy) 
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ETG 2

[18], which evolves via a wave-kinetic equation [19]
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Here   

€ 

v 
V DITG = vTe

ˆ b ×ρe

v 
∇ φDITG  is the velocity field due to the (ρi-scale) DITG turbulence. We

emphasize that this flow field corresponds to the entire DITG velocity field, not just the
dominant zonal flow component, and in particular includes the slightly smaller-scale
fluctuations due to trapped electrons and other effects. We then use a quasi-linear approach to
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rewrite the effects of the DITG flow field on the ETG turbulence in terms of a k-space
diffusion tensor

€ 

∂ N
∂t

=
∂
∂xα

Dαβ

∂ N
∂xβ

+ 2γ k N −Δωk N
2

 (15)

  

€ 

Dαβ = ρe
2vTe

2 qαqβ
v 
k × v q ( ) ⋅ ˆ b 

2
R Ωq( )φq

DITG 2

q
∑ (16)

  

€ 

R Ωq( ) =
1

2γ k − i Ωq −
v q ⋅ v v g( )

≈
1
2γ k

(17)

The tensor structure of Dαβ reflects the fact that the DITG flow field is a two-dimensional
shear field, such that radial shear leads to diffusion in kr, and poloidal shear leads to diffusion
in kθ; this tensor form has also been discussed by Hahm and Burrell [20]. The brackets denote
the quasi-linear averaging, meaning that Eqn. 15 describes the evolution of the ETG intensity
on DITG space and timescales.

The importance of DITG shearing can be estimated by comparing the k-space diffusion rate

€ 

γD ≈ Dαβ kαkβ  against the self-damping rate 

€ 

γ self = Δω N ≈ 2γ k = γ lin  (the equivalence

between γself and γlin reflects the saturation level in the absence of DITG turbulence). If
diffusion is much more rapid than linear growth 

€ 

γD >> γ lin( ) , then the DITG turbulence will

rapidly take energy from linearly unstable wavenumbers to larger, stable wavenumbers, and
thereby suppress the ETG turbulence. Conversely, if diffusion is much smaller than the linear
growth rate 

€ 

γD << γ lin( ) , then the ETG “self-saturation” mechanism dominates and the ETG

turbulence is insensitive to the presence of the DITG turbulence. Estimation of the diffusion
rate requires an estimation of the DITG spectrum, for which we use a mixing-length estimate
which represents an upper bound for DITG intensity (since it does not reflect the
suppress ion  of  DITG mode by ρ i-scale  zona l  f lows) .  Taking

€ 

φq
DITG 2

=1 q2LDITG
2 ,  LDITG = LTiLB  (representing curvature-driven modes), we have
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γD =
Dαβ

kαkβ
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ρe
2vTe
2

γ lin
q4 φq
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q
∑ ≈

ρe
2vTe
2

γ lin

q2

LDITG
2  (18)
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γD
γ lin

=
vTe

γ linLDITG

 

 
 

 

 
 

2

q2ρe
2 =

m
M

q2ρi
2

kθ
2ρe

2
τ 2ηi

ηe −ηe
c (19)

, where we have used 

€ 

γ lin ≈ vTe Ln( ) kθρe( ) ε ηe −ηe
c( ) τ  (ε = Ln/LB, τ = Te0/Tio, ηe = Ln/LTe,

and ηe
c is the critical value of ηe needed for ETG instability), and 

€ 

q2  is the mean square
wavenumber of the DITG turbulence. In general, the diffusive rate will be much smaller than
the linear growth rate, as evidenced for by the electron to ion mass ratio m /M  which
physically represents the scale separation of the ETG and DITG modes. However, for the
cases of streamers or skin depth fluctuations, one has a more interesting result:
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1. Streamers with 

€ 

kθρe ≈ 0.1 have a ratio

€ 

γD
γ lin

≈ 100 m
M

q2ρi
2( ) τ 2ηi

ηe −ηe
c (20)

2. Collision skin depth scale fluctuations with 

€ 

kθρe ≈ ρe δe = βe ,  βe = 8πn0Te B0
2  (βe is

generally between 0.01 and 0.1 for current high-power tokamaks) have a ratio

€ 

γD
γ lin

≈
m
M

q2ρi
2

βe

τ 2ηi

ηe −ηe
c (21)

In either case, one finds that these large-scale components of the ETG turbulence may be
susceptible to shearing by the short-wavelength component of the DITG turbulence,
particularly if the ETG turbulence is close to marginality. In essence, the large-scale ETG
structures become sufficiently close in size to the short-wavelength DITG turbulence to
experience serious interactions. These scalings therefore suggest that streamers or δe-scale
fluctuations, which are the proposed mechanisms for experimentally relevant ETG-driven
transport, may be significantly impacted by DITG shearing. This finding not only calls into
question the validity of assuming ETG driven electron thermal transport in the bulk of the
plasma, but also in the transport barriers where DITG is believed to be suppressed, since the
short-wavelength component of the DITG turbulence is more likely to survive in the shear
region which is believed to suppress the long-wavelength component of the DITG, and it is
precisely this component which is relevant for shearing the ETG turbulence. Taken with the
possibility that TEM modes (or at least their short-wavelength component) may be able to
survive in regions of finite shear and still produce significant levels of electron thermal
transport, as well as the results of Section 2 which raise serious questions about the viability
of streamers in ETG turbulence, one is naturally lead to the conclusion that the relevance of
ETG turbulence for explaining tokamak transport levels highly questionable, and that there
are serious conceptual and physical issues which much be addressed before a true
understanding of the physics of electron thermal transport can be claimed!

3.2 Effects of DITG Modulations of ηe

In addition to direct shearing of ETG turbulence, DITG modes can also affect ETG turbulence
via modulations and distortions of other relevant fields, such as the electron temperature field
Te. The impact of DITG modulations of Te will be qualitatively different, since the ρi-scale
modulations of Te will appear as modulations of the equilibrium Te gradient LTe, or
equivalently ηe = Ln/LTe on ρe scales. Although we do not consider modulations of Ln here,
they could in principle be treated in a manner analogous to the analysis below. To lowest

order, modulations of ηe represent modulations of 

€ 

γETG ∝ ηe −ηe
c , where ηe

c represents a

critical value of he needed for ETG instability. Writing ηe = ηe
0 + δηe, we again exploit the

separation of space and timescales to use a wave-kinetic description of the ETG turbulence,
which is linearized to provide the response of the ETG turbulence to the modulation δηe
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R−1 Ωq( )δNq = 2∂γ k
∂ηe ηe=ηe

c

δηq N (22)

where R(Ωq) is defined in Eqn. 17, and we have expressed 
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δηe = δηq exp i v q ⋅ v x −Ωqt( )( )q∑ .

Ignoring the shearing effects of the DITG turbulence, we again use a quasilinear closure to
describe the dynamics of 
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(25)

where we have used 

€ 

γ k ∝ ηe −ηe
c  and 

€ 

R Ωq( ) ≈ 1 2γ k . Therefore, when the RMS amplitude

of the ηe modulations is comparable to the deviation of ηe from its critical value (a condition
which is readily achievable for realistic DITG intensities), this modulation effect will be
important, and the effective growth rate of the ETG turbulence will be enhanced from its
“bare” value. It is important to note that the analysis presented here is a mean-field treatment
which implicitly assumes ηe

0 + δηe(t) > ηe
c i.e. the modulation of ηe never brings ηe below the

critical value, which would stabilize the ETG instability. However, it is clear that such a
situation could easily occur (particularly if the system was close to ETG marginality), in
which case describing the dynamics becomes much more complex. It is therefore easy to see
that a much richer range of dynamics is possible than described here, including possibilities
such as submarginal ETG turbulence, or complex spatio-temporal behavior of the ETG
turbulence on DITG space and time scales are two obvious possibilities. Also note that this
interaction does not depend explicitly upon the electron-ion mass ratio, in contrast to the
shearing effects discussed in Section 3.1 (although it does implicitly rely upon separation of
scales). Thus, numerical investigations of ETG-DITG interactions which use artificial mass
ratios will not correctly calculate the relative importance of flow shearing vs. ηe modulations!
Finally, we observe that while the ηe modulation effect described here represents a new
avenue for investigating interactions between ETG and DITG turbulence, it is not yet clear
what impact it would have upon the large scale structures in ETG turbulence described in
Section 2, and how it would affect their relevance in explaining the net electron thermal
transport level.
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