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Abstract. Mixing length estimates of the anomalous ion and electron thermal diffusivities
caused by the ITG and ETG mode, respectively, have revealed that both diffusivities are pro-
portional to the safety factor q. In the case of ITG mode, the maximum χi occurs at long
wavelengths where coupling to the ion acoustic mode is dominant while ETG driven χe peaks
at wavelengths comparable to the electron skin depth.

1. Introduction

Several observations have been reported on the dependence of the thermal diffusivity χ
in tokamaks on the safety factor q. Petty et al. have found that in the DIII-D tokamak,
both the ion and electron thermal diffusivities increase almost linearly with the safety
factor q [1]. In gyro-fluid simulations of tokamak transport due to the ion temperature
gradient (ITG) mode, the relationship χi ∝ q has also been observed [2]. In a recent study
on the electron temperature gradient (ETG) mode without imposing charge neutrality,
the electron thermal diffusivity has been found to scale linearly with q, χe ∝ q [3]. In an
earlier study [4], it was shown that the electron thermal diffusivity in the form

χe '
qcs
R

µ
c

ωpe

¶2
, (ηe > 1) , (1)

could reproduce the χe profiles in various tokamaks under vastly different discharge con-
ditions. Here, cs is the ion acoustic speed, c/ωpe is the collisionless electron skin depth
and ηe is the electron temperature gradient relative to the density gradient. Eq. (1) differs
qualitatively from the diffusivity proposed by Ohkawa [5],

χe, Ohkawa '
vTe
qR

µ
c

ωpe

¶2
, (2)

which is inversely proportional to q.

In this paper, results of kinetic, integral equation based ballooning stability analysis
of both ITG and ETG modes will be presented. The kinetic, electromagnetic integral
equation code [6] is able to handle short wavelength modes in the regime k ' kDe (Debye
wavenumber) where charge neutrality does not hold. The linear increase with the safety
factor q is observed for both ITG driven χi and ETG driven χe and it is attributed to the
coupling to the ion sound mode in the case of ITG mode and to the skin size drift mode
in the case of ETG mode. When s (magnetic shear) ' 1, and r/R = 0.1, the ion thermal
diffusivity is well represented by

χi = 0.21q

r
R

LTi

vTiρ
2

LTi
,
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and the electron thermal diffusivity by

χe '
qvTe
LTe

µ
c

ωpe

¶2p
βe.

2. ITG Mode

In the case of the ITG mode, such q dependence of the ion thermal diffusivity (χi ∝ q)
has not been revealed in the standard drift mode analysis in which the coupling to the
ion acoustic mode is usually ignored and main attention has been paid to shorter wave-
length, fastest growing mode with a growth rate significantly larger than the ion acoustic
frequency. However, peaking of the diffusivity based on the mixing length estimate,

χ ' γ

k2⊥
, (3)

does not coincides with the peaking of the growth rate γ. Rather, the maximum diffusivity
occurs at a longer wavelength close to the instability threshold. In the case of ITG mode,
the instability is deactivated when the growth rate approaches the ion transit (or acoustic)
frequency ωTi = vTi/qR. Since the growth rate is approximately given by γ ' √ηiω∗ωD,
the threshold k⊥ρ becomes inversely proportional to q,

(k⊥ρ)
2 ∝ 1

q2
LTi

R
,

and the following diffusivity emerges,

χi ∝ q
vTiρ

2

LTi

f

µ
R

LTi

¶
, (4)

where the function f is the growth rate normalized by the ion transit speed, γ =
f (R/LTi) vTi/qR. As will be shown, analysis based on a kinetic ballooning integral equa-
tion code confirms the linear dependence of χi ∝ q and the function f is approximately
given by f =

p
R/LTi.

Figure 1 shows the ITG mode driven ion thermal diffusivities as functions of bs =
(kθρs)

2 when Te = Ti, Ln/R = 0.2, r/R = 0.1 (destabilizing trapped electrons included),
ηi = ηe = 2.5, s = 1, βi = βe = 10

−4 (top), and 10−3 (bottom). The safety factor q was
varied as a parameter between 1 and 4. The low β case (top) is essentially electrostatic,
and the diffusivity indeed increases with the safety factor being proportional to q. When
β is increased to βe = βi = 0.1 % (bottom), the linear increase in χi with the safety
factor breaks down. The diffusivity increases more rapidly, χi ∝ q3/2, until the ballooning
parameter α defined by

α =
q2R

Ln
[(1 + ηi) βi + (1 + ηe) βe] ,

becomes large enough to stabilize the ITG mode [7]. (When βe = βi = 10
−3 and q = 4, the

ballooning parameter for the parameters assumed is α = 0.56. The ITG mode is stabilized
but will be taken over by the ballooning mode. When s = 1, the threshold α for the ideal
MHD ballooning mode is αMHD ' 0.6.) This finding may explain the observation that in
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H-modes discharges, χi increases with q more rapidly than linearly. The simulations in
Ref. 2 were electrostatic without finite β effects. In this case, χi ∝ q is expected. Fig. 2
shows the dispersion relation of the ITG mode when q = 2 (top) and 4 (bottom). The
mode frequency and growth rate are normalized by the ion acoustic transit frequency
ωs = cs/qR. The mode frequency at bs where χi peaks is indeed close to the ion acoustic
frequency, |ω| ' ωs = cs/qR. As q increases, the FLR parameter bs at χimax decreases in a
manner bs ∝ 1/q2. This can be seen from the threshold of bs imposed by γ ' √ηiω∗ωD '
vTi/qR, which yields

bs ∝
1

q2
LTi

R
.

The growth rate is of the order of the ion acoustic frequency γ ' fcs/qR, and resulting
diffusivity is

χi ∝ q
vTiρ

2

LTi
f

µ
R

LTi

¶
.

Here the function f is the growth rate normalized by the ion acoustic frequency and near
the threshold it is approximately given by f =

p
R/LTi. The ion thermal diffusivity that

has been found by scanning q, ηi, Ln/R, over a wide range may be summarized by the
following expression

χi = 0.21q

r
R

LTi

vTiρ
2

LTi
,

when s = 1, r/R = 0.1, and Ti = Te.

Fig. 1. Ion thermal diffusivity due to the ITG mode normalized by csρ
2
s/Ln vs. bs =

(kθρs)
2 when q is varied. (a) βi = βe = 10

−4, (b) βi = βe = 10
−3. Common parameters

are: εn = 0.2, ε = 0.1, ηi = ηe = 2, s = 1, Ti = Te, mi/me = 1836.
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Fig. 2. Mode frequency (ωr/ωs solid line and growth rate γ/ωs) vs. bs when q = 2 (a)
and q = 4 (b). βi = βe = 10−4, εn = 0.2, ε = 0.1, ηi = ηe = 2, s = 1, Ti = Te,
mi/me = 1836.

3. ETG Mode

It is generally conjectured that the short wavelength electron temperature gradient
(ETG) mode is dual of the long wavelength ion temperature gradient (ITG) mode, since in
the former, ions are adiabatic while in the latter, electrons are (except for the destabilizing
roles of trapped electrons on the ITG mode [7]). However, there are some basic differences
between the two modes. First, in the ETG mode, charge neutrality does not necessarily
hold because of short wavelength nature. Second, while the ITG mode can be stabilized
by a modest plasma β factor through the coupling of electron dynamics to the magnetic
perturbation, the ETG mode is quite resilient against finite β stabilization which can
occur through equilibrium modification only at such a large α (the ballooning parameter)
as to cause an effective magnetic drift reversal. If isomorphism between the ETG and ITG
modes holds, the mixing length estimate for the electron thermal diffusivity would be of
the order of

χe '
vTe
Ln

ρ2e, (5)

which is smaller than the ion thermal diffusivity due to the ITG mode by approximately
a factor of

p
mi/me, and thus would not be relevant to the anomalous electron thermal

transport commonly observed in magnetic confinement devices. Here, vTe =
p
Te/me,

Ln is the scale length of the density gradient, ρe the electron Larmor radius, and mi/me

is the ion/electron mass ratio. Such small transport has indeed been observed in a fluid
simulation of the ETG mode [8] in which charge neutrality was imposed. In a kinetic
simulation without assuming charge neutrality [9, 10], thermal transport significantly
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larger has been observed. The large transport was attributed to the formation of large
scale, radially extended streamers.

The ETG mode is electrostatic. However, when charge neutrality does not hold, its
growth rate becomes dependent on the electron density and thus the electron β factor.
The βe dependence of the growth rate may be shown qualitatively as follows. Substituting
adiabatic ions ni = −eφn0/Ti and approximate electron density perturbation without
electron transit effect,

ne ' ηeω∗eωDe

ω2
e−beI0 (be)

eφ

Te
n0, (6)

in the Poisson’s equation ∇2φ = −4πe (ni − ne) , we find the growth rate,

γ (be) =

s
2Te/me

LTR

s
bee

−beI0 (be)
τ + (be/β∗)

, (7)

where ηe = Ln/LT is the electron temperature gradient parameter, ω∗e = vTe
Ln

√
be, ωDe =

2vTe
R

√
be, be = (k⊥ρe)

2 , I0 is the modified Bessel function, τ = Te/Ti, and

β∗ = βe
mc2

2Te
=

µ
ωpe

Ωe

¶2
, (8)

with ωpe the electron plasma frequency and Ωe the cyclotron frequency. The maximum
growth rate can be found by scanning the finite Larmor radius parameter be. When the
maximum growth rate is written as γmax =

p
2Te/meLTRf (β∗) , the function f (β∗) is

approximately proportional to
p
β∗ in the regime β∗ . 1 relevant to tokamaks. It should

be noted that in tokamak stability analysis, the FLR parameter (k⊥ρe)
2 , the β factor

and corresponding ballooning parameter α = q2 (R/Ln) [(1 + ηe)βe + (1 + ηi)βi] are to
be specified. Then, the charge nonneutrality factor (k/kDe)

2 = (k⊥ρe)
2 βe

mc2

2Te
necessarily

involves a normalized temperature.

These qualitative estimates are consistent with the results of stability analysis based on
the integral equation code. As explained above, charge neutrality breaks down for typical
tokamak discharge parameters and duality between the ITG and ETG modes does not
hold anymore [3]. The maximum growth rate, which is of the order of the electron transit
frequency ωTe = vTe/qR, does occur at k ' kDe where kDe is the Debye wavenumber. The
electron FLR parameter kθρe is not a convenient normalization of the wavenumber in the
ETG mode. Also, it is necessary to specify a normalized electron temperature Te/mc2 in
fully electromagnetic gyrokinetic analysis. has to be specified in addition to the numerous
other dimensionless parameters in electromagnetic gyrokinetic formulation.

As in the case of ITG mode, the maximum electron thermal transport by the ETG
mode occurs at the lower edge of the unstable k spectrum which is in the region of the
inverse electron skin depth, k⊥ & ωpe/c. The growth rate of the ETG mode is independent
of the safety factor q. (In Fig. 3 (b), the normalized growth rate γ/ (vTe/qR) increases with
q. The growth rate γ itself is thus independent of q.) The q dependence of χe due to the
ETG mode (χe ∝ q) stems from the progressive extension of k spectrum toward longer
wavelengths as q increases. The normalized wavenumber (ckθ/ωpe)

2 at the most active
transport is inversely proportional to q. This is shown in Fig. 3 for the case βe = βi = 0.2%,
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εn = 0.2, ηe = 2, ηi = 1, s = 1, Ti = Te = 10 keV in a hydrogen discharge. The safety
factor q is varied between 2 and 4. The diffusivity is normalized by Ohkawa diffusivity as

χe → χe
qR

vTe

³ωpe

c

´2
,

and ω and γ by ωTe = vTe/qR. The normalized maximum diffusivity found numerically
is nearly proportional to q2 and thus the unfolded diffusivity is proportional to q.(Note
that ωTe ∝ 1/q.) The maximum diffusivity occurs in the region k2θ ' ω2pe/c

2, and δe =

(ckθ/ωpe)
2 at the maximum diffusivity is inversely proportional to q clearly seen in Fig. 3

(a). The thermal transport due to the ETG mode is thus governed by fluctuations in the
region of the electron skin depth. As in the case of ITG mode, the maximum growth rate
of the ETG mode occurs at much shorter wavelength, kθ . kDe. The electron thermal
diffusivity due to the ETG mode that has been found by extensive parameter scan can
be well approximated by

χe ' 0.1
qvTe
LTe

µ
c

ωpe

¶2p
βe, (9)

where βe is the electron beta factor which destabilizes the ETG mode. (For an extremely
low density and thus low β, the measure of charge nonneutrality (k/kDe)

2 becomes large
and the ETG mode tends to be stabilized. The growth rate of the ETG mode is approx-
imately proportional to

p
βe even though the mode is predominantly electrostatic.) The

ratio between Eq. (9) and Ohkawa diffusivity is

0.1q2
R

LT

p
βe, (10)

which is of order unity.

Fig. 3. (a) Electron thermal diffusivity due to the ETG mode normalized by
the Ohkawa diffusivity vs. δe = (ckθ/ωpe)

2 when βi = βe = 0.002, εn = 0.2,
ηi = 1, ηe = 2, s = 1, Ti = Te = 10 keV, mi/me = 1836. (b) and (c) show
corresponding mode frequency ω/ωTe and growth rate γ/ωTe, ωTe = vTe/qR.
q = 2 (solid lines), 3 (dotted lines) and 4 (dashed lines).
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4. Conclusions

In conclusion, it has been shown in terms of linear stability analysis and lowest order
mixing length estimates that both long wavelength ITG mode and short wavelength ETG
mode yield ion and electron thermal diffusivities approximately proportional to the safety
factor q. Such dependence has recently been observed in transport analysis of DIII-D
tokamak. Sensitive q dependence of χi due to the ITG mode originates from the coupling
to the ion acoustic transit mode which dominated transport. The growth rate is of the
order of the ion acoustic frequency and thus inversely proportional to q. The ion FLR
parameter at the maximum transport is proportional to q−2, (kθρs)

2 ∝ q−2, and a resulting
mixing length diffusivity is proportional to q, χi ∝ q.

In the case of ETG mode, the lower threshold of the cross-field wavelength occurs at
the electron skin depth. The growth rate is independent of q. However, δe = (ckθ/ωpe)

2

at the maximum transport is inversely proportional to q yielding χe ∝ q.
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