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Abstract. The saturation of stationary zonal flows (ZF) in the core of a tokamak has been
analyzed in numerical fluid turbulence computer studies. The model was chosen to properly
represent the kinetic global plasma flows, i.e., undamped stationary toroidal or poloidal flows
and Landau damped geodesic acoustic modes. Reasonable agreement with kinetic simulations
in terms of magnitude of transport and occurance of the Dimits shift was verified. Contrary
to common perception, in the final saturated state of turbulence and ZFs, the customary per-
pendicular Reynolds stress continues to drive the ZFs. The force balance is established by the
essentially quasilinear parallel Reynolds stress acting on the parallel return flows required by
incompressibility.

1 Introduction

It is now common knowledge that the saturation of the ion turbulence in the core of
magnetic fusion devices at mixing length estimates crucially requires the presence of zonal
flows (ZF), radially localized but poloidally and toroidally homogeneous electric fields,
which correspond to a poloidal rotation of a flux surface as a whole [1, 2, 3]. Artificially
switching off the ZFs in nonlinear turbulence computations results in a transport increase
by up to two orders of magnitude. The ZFs themselves are assumed to be excited by the
turbulence, i.e., by its perpendicular Reynolds stress accumulating poloidal momentum
at certain (minor) radial positions. Knowledge about the ZFs is not only important for
an understanding of standard tokamak or stellarator turbulence, but seems to be linked
to the shear flows observed upon transitions into improved confinement regimes, like the
H-mode or internal transport barriers.

Different from the core, in the edge of a tokamak, the ZFs have been shown in the
past to take the form of oscillating geodesic acoustic modes [4], since the poloidal rotation
of the curved torus is not free of divergence, but contains regions, where the plasma
is compressed while moving towards lower major radii or decompressed while moving
to increasing major radii. The compression and expansion consume free energy, which
necessarily has to be taken from the kinetic energy of the rotation: a restoring force
ensues, resulting in an oscillation.

Since the core ZFs are known to be quasi-stationary from turbulence simulations,
additional auxiliary flows parallel to the magnetic field must exist which cancel their
inherent divergence. The auxiliary flows occur whenever the poloidal E ×B velocity has
a divergence, i.e., for all types of magnetic equilibria with finite geodesic curvature. They
are thus not restricted to tokamaks, but would occur in such exotic situations as, e.g.,
flows within solar flares. Studies of generation and saturation [1, 2, 3, 5, 6] of poloidal
ZFs in the core of tokamaks have considered the radial transport of poloidal momentum,
i.e., the perpendicular Reynolds stress alone, despite the obvious necessity of the auxiliary



parallel flows to render the poloidal flow stationary.
The numerical turbulence simulations and analytical discussions in the present pa-

per deal with the complete force balance on the ZFs including the auxiliaray flows, the
auxiliary flows’ magnitude, their interaction with the turbulence, and the reason for the
difference between core and edge ZFs.

2 Core turbulence model equations

For the numerical and analytical computations, we intentionally use the most simple
model complete enough to encompass the essential physics (ion temperature gradient
(ITG) modes, undamped stationary ZFs, undamped toroidal flows, and linearly damped
oscillating geodesic acoustic modes). These requirements essentially single out the elec-
trostatic 3D two-fluid equations. We use variants of the 3D ITG fluid equations in [7]
derived with the additional approximations of adiabatic electrons (due to the high elec-
tron thermal velocity) and local conditions (due to low ρ∗ = ρi/a). In dimensionless units,
the system for the fluctuation quantities φ, Ti, v‖ is
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The background electron and ion temperatures are equal and the ions are singly charged.
Gradient lengths are defined as Lξ = d ln r/d ln ξ, ξ = n0, Ti0. The parallel co-ordinate
z ≡ θ ranges from −π . . . π, i.e., the parallel length unit is L‖ = qR. The perpendicular
co-ordinates x, y are given in ion gyro radii ρi =

√
miTi0/(eB). The unit for the electric

potential energy eφ and ion temperature is Ti0ρi/Ln. With the ion sound velocity cs =√
Ti0/mi the parallel and perpendicular velocity unit is vdi = csρi/Ln, which makes the

time unit t0 = Ln/cs. The dimensionless parameters are εn = 2Ln/R, ηi = Ln/LTi,
εv = εn/(2q) = Ln/(qR) (the parallel sound speed cs in terms of L‖/t0, which differs from
the parallel velocity unit), κi is the parallel heat conductivity. To obtain damping rates
for the parallel ion temperature fluctuations similar to those from kinetic phase mixing,
κi for the equilibrium perturbations ky = 0 (for the turbulence ky > 0 modes) is chosen,
so that temperature perturbations with a typical parallel wavenumber k‖ = 1 (∼ 4 for
the turbulence modes) are damped at the sound frequency, i.e., κi = 3/2εv (κi = 3/8εv).
The advective time derivative Dt is ∂t + ẑ×∇⊥φ · ∇⊥, the curvature terms are computed
for circular geometry Ĉ = cos z∂y + sin z∂x, and the derivative along the magnetic field,
∂‖ is ∂z − sx∂y taking into account the magnetic shear s. The contributions of the flux
surface average 〈φ〉 in the equations assure that the electrons do not react adiabatically
to homogeneous φ fluctuations on a flux surface, thus allowing for ZFs. The ITG modes
in the above system have been examined in [8].

3 Linear flow properties

The toroidal stationary flows are represented by v‖(y, z) = const and φ = Ti = 0. They
are stationary in the above system, since it contains only derivatives of v‖ with respect to



the parallel co-ordinate.
A poloidal ZF has an electric potential homogeneous on a flux surface, φ = 〈φ〉. For

stationary flows, the finite radial gradients of the ZF’s electric potential occuring in the
curvature term in Eq. 1, −εnĈ[2φ − 〈φ〉] = −εnĈφ = −εn sin θ∂xφ, have to be balanced
by a parallel velocity field of the form v‖ = −εn/εvφ cos θ. Finally, the oscillating GAMs
couple all three fields and are damped by dissipation. They can be readily derived for
low sound velocity, dissipation and radial wavenumber κi, εv, kx → 0. In that limit,
φ = 〈φ〉(1 + kx sin θ/ω)(1 + O(k2

x)), Ti = 2/3〈φ〉(kx sin θ/ω)(1 + O(k2
x)), and frequency

ω = 4/3εn. For the actually used κi, εv the GAM frequency is shifted somewhat due to
the coupling to the parallel velocity, and (for core parameters) it is damped in about a
sound transit time by the fluid heat conduction term, as it is in the kinetic system by
Landau damping [9].

Thus both the required ingredients, undamped stationary ZFs [10] and geodesic acous-
tic modes (GAM) [4, 11], are supported.

The total kinetic energy density of the stationary ZF, including the return flow, is
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Since in practical cases q > 1, the major part of the kinetic energy is hidden in the return
flow. In other words, the poloidal flows experience an effective mass density enhanced
by the factor 1 + 2q2 [12]. A similar enhancement arises in the gyrokinetic collisionless
analysis with circular flux surfaces of low inverse aspect ratio ε = a/R, where the factor
is increased to 1 + 1.6q2/

√
ε [10] owing to the additional free energy contained in the

non-Maxwellian features of the auxiliary flow [13].
From the mode structure and energy conservation one can immediately obtain the

rate of change of the ZFs,

∂tvy =
〈fy − 2q cos(θ)f‖〉

1 + 2q2
, (5)

where the poloidal and parallel force densities fy, f‖ are given by the negative divergence
of the respective Reynolds stresses. Apparently, the most important term is not the
flux surface averaged poloidal force 〈fy〉 = −∂xRp since it is weakened by the neoclassical
factor, but instead the in/out asymmetry of the parallel force 〈f‖ cos θ〉 = −∂xR‖ produced
by the appropriate average R‖ = 〈cos(θ)v‖vx〉 of the parallel Reynolds stress. Rp, R‖
correspond exactly to the even and odd source terms of the gyrokinetic theory in [10],
respectively.

From these linear considerations one can expect that, due to its dominance, turbulent
radial diffusion of the parallel return flow should play a vital role in controlling the ZF
level.

4 Nonlinear turbulence computations

The interplay of perpendicular and parallel turbulent forces on the ZFs has been explored
in a series of numerical studies of toroidal ion temperature gradient (ITG) turbulence,
centered around the well known cyclone base case parameter set [14], εn = 0.9, s = 0.8,
R/Ln = 2.22, ηi = 3.1, q = 1.4. Average computational domain sizes of 130ρi × 2000ρi ×
2πL‖ at a grid resolution of 128 × 2048 × 32 were used. Corroborating the model, the
threshold temperature gradient and the transport at the base case parameters agree to



30% with the gyrokinetic results. Moreover the nonlinear upshift of the threshold known
from gyrokinetic models [14] occurs in the fluid model, too.

(a)

(b)

Fig. 1. Results of turbulence computation with cyclone base case parameters; a) poloidal flow

versus radial position and time; b) Flux surface averages versus radius in dimensionless units

at t = 710. Solid: poloidal flow (upper plot), shearing rate (middle plot), poloidal Reynolds

stress (lower plot). Dashed: return flow (upper plot), negative parallel stress (lower plot). Note

the good balance between poloidal and parallel return flow and poloidal and parallel stress,

respectively. The poloidal stress is in phase with the shearing rate and is thus driving.

For gradients above the nonlinear ITG threshold, stationary zonal flows are generated
and their amplitude evolves into a nearly stationary state (see, e.g., fig. 1a). In addi-
tion oscillating GAMs are also observed. They are believed to play a minor role in the



determination of the turbulence level [11]. (For small computation domain widths in y,
e.g., the 130ρi × 130ρi × 2πL‖, the flows are much more irregular at a somewhat reduced
transport. This is a finite ρ∗ effect due to the fluctuating part of the Reynolds stress [15].)

The stationary flows are well described by the linear modes discussed above. A com-
parison of the solid and dashed curves in the upper third of fig. 1b) shows the poloidal
E ×B flow to be accurately matched by the parallel return flow rescaled by εv/εn.

Different from previously proposed saturation mechanisms [1], the customary perpen-
dicular Reynolds stress continues to heavily drive the ZFs, even in the saturated phase.
Comparing the measured perpendicular Reynolds stress, shown as the solid curve in the
lower third of fig. 1b), with the flow shear (middle plot in the same figure) one finds
that the flow would continue to grow with the rather short time constant 0.25 if the
perpendicular stress was the only force. In reality, the flows are prevented from growing
further by the braking due to the turbulent advection of the parallel flow component. The
effective perpendicular and parallel stresses are compared in the lower third of fig. 1 b)
and obviously cancel each other quite accurately.

Fig. 2. Results of turbulence computation with cyclone base case parameters and artificial flow

shear; parallel (braking) Reynolds stress (upper plot), shearing rate (middle plot), χi (lower

plot), all in natural dimensionless units. For flow shears above 0.15, the braking parallel stress

is decreasing in terms of absolute numbers. The RMS self-consistent flow shear is 0.28. (The

initial rise in χi is due to the preceding negative half wave of the artificial flow.)

5 Transport of parallel momentum

Further investigation of the turbulent parallel force [16] shows that it is essentially due to
the quasilinear diffusion of the parallel flow caused by the ambient ITG turbulence, and
is of similar magnitude as the anomalous heat diffusion coefficient. In addition, different
from the poloidal flow component, the parallel one is subject to an instability localized
in the regions of maximum flow shear. For non-marginal ITG turbulence, however, the



instability has much too low saturation amplitude to come up for the observed equilibrium
braking force. To further corroborate the quasilinear nature of the parallel braking, we
show the parallel Reynods stress for an artificially superposed flow in fig. 2. While it is
braking in that case, too, it is decreasing with increasing flow shear. This is due to the
reduction of the ambient ITG turbulence by the increasing flow shear, and is incompatible
with stress being due to a genuine flow instability.

Poloidal and parallel stress behave different with respect to the ZF drive, because
the turbulent structures can be effectively sheared by the poloidal velocity field whereas
they cannot by the parallel velocity, due to the enormous anisotropy of the turbulent
structures, which have perpendicular scale legths of order of about 10ρi but parallel scale
lengths of order of the connection length, qR. The perpendicular flow shear is thus able
to tilt the turbulent structures, so that the resulting turbulent stress amplifies the flow,
while the parallel momentum is just redistributed by the turbulent eddies.

Moving away from the tokamak center, with rising safety factor q the importance of
the parallel force on the flows increases strongly. This is because both the energy of the
parallel flow component and the quasilinear diffusion coefficient for it increase proportional
to q2. (The parallel connection length affects the quasilinear parallel momentum diffusion
coefficient through the ratio of parallel sound transit time to turbulence time scales.) This
leads overall to an excessive parallel braking in the tokamak edge where q & 3, which
explains the complete quench of the stationary ZFs, leaving only the geodesic acoustic
modes [4].

6 Conclusions

In a curved magnetic geometry the requirement of incompressibility couples quasi-stationary
poloidal flows to parallel return flows, which, for average parameters, comprise the major
part of the flows’ free energy. Consequently, the behavior of quasi-stationary zonal flows
depends crucially on the appropriate flux surface average of the parallel Reynolds stress
and not alone on the perpendicular Reynolds stress. Different from the perpendicular
flows the parallel ones tend to be damped by turbulence and are prone to instabilities.
In numerical turbulence studies the parallel flow braking was found to be responsible for
ZF saturation, while the poloidal flow component continues to be driven. For saturated
turbulence states, the braking effect was found to be caused by the quasilinear transport
of parallel momentum by the ambient ITG turbulence and not by the instability. The
importance of the parallel stress is controlled mainly by the safety factor q because, on
one hand, the energy in the parallel flow is proportional to q2, and on the other hand,
both the quasilinear parallel turbulence viscosity and the ZF instability threshold depend
on the square of the sound frequency ω2

s ∝ q2. On account of this strong dependence,
safety factors of over three seem to completely suppress the stationary flows in fluid turbu-
lence simulations leaving only the oscillating geodesic acoustic modes [4]. All these facts
suggest the inclusion of the parallel return flow dynamics in analytical transport models
[17]. Moreover, an experimental measurement of the forcing of the toroidicity induced
flow component, e.g., by similar methods as in [5, 18] would seem very interesting.
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