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Abstract: In the fluid model, electromagnetic drift mode in low β tokamak plasmas is studied from a 

set of new-derived eigenequations, including magnetic shear, perpendicular and parallel velocity 

shears, perpendicular and parallel current density and their shears, and finite β. It is found that there 

exists a threshold of perpendicular velocity shear, at which the growth rate tends to zero. The threshold 

increases with decrease of magnetic shear. On the other hand, the increase of β reduces the growth rate 

but increases the velocity shear threshold. In addition, we study the effects of parallel velocity shear on 

the instability and find that it enhances the instability. Furthermore, the preliminary calculations show 

that the perpendicular current density shear suppresses the instability while the parallel current density 

shear strengthens it. 

 
 

It is commonly believed that the anomalous transports in tokamak plasmas are attributed 

to drift or drift-like instabilities driven by the gradients of plasma parameters. e.g. pressure 

gradient, magnetic curvature, and parallel velocity shear. Thus, it is important to understand 

the stabilizing mechanisms on the instabilities. The magnetic shear, perpendicular velocity 

shear, and finite , which could suppress the instabilities, have widely been studied both 

experimentally [1] and theoretically [2-4]. But, understanding on them might be still 

incomplete. Therefore, it is necessary to study their properties and effects on the instabilities 

further. 

β

We now study an electromagnetic perturbation of low  plasma in the usual circular 

cross-section tokamak with  and , which varies as 

β

/(ε)cos1/(0 θε+= BBz zBqB )θ =

][exp)(~ tzkrkirff z ωθθ −+= ,                        (1) 

where , ;  and  are the poloidal and toroidal mode number, and 

 and R ( ) are the minor and major radius of plasma, respectively.  

rmk /=θ

Rr <<

Rnkz /−= m n

r

In the hydrodynamic regime of ions and electrons, our model consists of the continuity 

equations of ions and electrons, energy equation of ions, and the parallel motion equation of 

electrons, together with the quasineutrality condition ( ), ei nnn ==
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in addition, the ion polarization drift is 

 

]))(()([)( 1 φφω ⊥⊥
− ∇+∇∇⋅+∇+∇
∂
∂

−= rircipi t
Bc vv  .          (8) 

 

Here Eq.(2) is obtained by subtracting the continuity equation of electrons from that of ions 

with the quasi-neutrality condition . In Eq.(3), the cancellation relation between 

the convective diamagnetic drift and diamagnetic heat flow of ions has been considered. Then, 

we obtain, respectively, from linearizing Eqs.(2)-(8), 
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where , , , , , 

, , , , and Ω . Here 

Eq.(11) is the adiabatic electron response and it reduces to the Eq.(10) in Ref.(5) when  

and  are taken to zero. Subsequently, we expand the equilibrium quantity at the rational 

surface ( ), e.g., 
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 where ,  and V  are respectively the equilibrium parallel 

and perpendicular fluid velocity of ions, , , and 

. Here the frequency, speed, and spatial scale are normalized to 

, , and , respectively. Then, using the local approximation 

( 0 ) we obtain a set of eigenequations from Eqs.(9)-(15), 
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In Eq.(17), the drift-like frequency associated with equilibrium current density , 

, is included [6], which, after being normalized to 

, can be written as, 

J
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Here  and  are defined as  and , 

respectively. The other quantities in Eq.(17) are conventional. The set of equations (17a) and 

(17b) is a singular one due to the resonance at rational surface (  or ). It is solved 

numerically by a standard shooting code procedure under the boundary conditions 

 and . The singular point ( ) and its vicinity are 

carefully treated with the singular initial value method [7]. 
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    In the following, we mainly study the perpendicular velocity shear , magnetic shear 

, and finite  effects on the instability. Figs.1 and 2 show the real frequency and growth 

rate as the function of perpendicular velocity shear for different magnetic shear.  is taken 

to be 0.005 in Fig.1 but be 0.012 in Fig.2. Here the dashed and solid lines represent the real 

frequency and growth rate while the curves 1 and 2 do the cases  and , 

respectively. It is found that there exists a threshold of , at which the growth rate tends to 

zero. Qualitatively, the conclusion is in agreement with the experiments [1] and simulations 

[8]. It seems that the perpendicular velocity shear threshold, obtained here, increases with 

decrease of magnetic shear. Experimentally, core transport barriers exist in the region where 

the perpendicular velocity shear is considerably large even if the magnetic shear is much 

small. Thus, the present result is not incompatible with experiments. Comparing Fig.1 with 

Fig.2, we can note that the increase of  reduces the growth rate but increases the velocity 

shear threshold. 
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Fig.1 Real frequency (solid line) and growth rate (dashed
line) vs perpendicular velocity shear for different magnetic
shear s=1.1(curve 1) and s=0.9 (curve 2). q=1.5, kθρ=0.036,
Vi///cs=0.3, sV//=-3, Vi⊥/cs=0.1, sJ//=0.0, sJ⊥=0.0, R/Ln=10,
R/LTi=10, R/LTe=10, τ=1.0, and β=0.005. 
 

 

Fig.2 Real frequency (solid line) and growth rate
(dashed line) vs perpendicular velocity shear for
different magnetic shear s=1.1(curve 1) and s=0.9
(curve 2). The other parameters are the same as
Fig.1 except that β=0.012. 

In addition, we study the parallel velocity shear effects. It is found that the parallel 

velocity shear enhances the instability, which has been shown in the previous work [9]. 

Furthermore, the preliminary calculations show that the perpendicular current density shear 

 suppresses the instability while the parallel current density shear  strengthens it. ⊥Js //Js
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