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Abstract: In the fluid model, electromagnetic drift mode in low g tokamak plasmas is studied from a
set of new-derived eigenequations, including magnetic shear, perpendicular and parallel velocity
shears, perpendicular and parallel current density and their shears, and finite g. It is found that there
exists athreshold of perpendicular velocity shear, at which the growth rate tends to zero. The threshold
increases with decrease of magnetic shear. On the other hand, the increase of S reduces the growth rate
but increases the velocity shear threshold. In addition, we study the effects of parallel velocity shear on
the instability and find that it enhances the instability. Furthermore, the preliminary calculations show
that the perpendicular current density shear suppresses the instability while the parallel current density

shear strengthensiit.

It is commonly believed that the anomal ous transports in tokamak plasmas are attributed
to drift or drift-like instabilities driven by the gradients of plasma parameters. e.g. pressure
gradient, magnetic curvature, and parallel velocity shear. Thus, it is important to understand
the stabilizing mechanisms on the instabilities. The magnetic shear, perpendicular velocity
shear, and finite /£, which could suppress the instabilities, have widely been studied both
experimentally [1] and theoretically [2-4]. But, understanding on them might be still
incomplete. Therefore, it is necessary to study their properties and effects on the instabilities
further.

We now study an electromagnetic perturbation of low S plasmain the usual circular

cross-section tokamak with B, = B, /(1+ ¢cosd) and B, =(¢/q)B,, which variesas
f = f(r)expi[k,r0+k,z—at], (1)

where k, =m/r, k,=-n/R; m and n are the poloidal and toroidal mode number, and

r and R(r << R) arethe minor and major radius of plasma, respectively.
In the hydrodynamic regime of ions and electrons, our model consists of the continuity
equations of ions and electrons, energy equation of ions, and the parallel motion equation of

electrons, together with the quasineutrality condition (n=n, =n,),
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in addition, the ion polarization drift is
1, O
v, =-¢(Bawy) l[a(Vr +V )g+ (v - V)V, +V )d] . (8)

Here Eq.(2) is obtained by subtracting the continuity equation of electrons from that of ions
with the quasi-neutrality condition n=n, =n,. In Eq.(3), the cancellation relation between

the convective diamagnetic drift and diamagnetic heat flow of ions has been considered. Then,

we obtain, respectively, from linearizing Egs.(2)-(8),

(Vig =Vey) VN +Vy - VP, = Vp, - VP, +6(V -V ;)

9)
+V, (o, —dv,,) =0,
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where x=(r—r.)/p , A, =(c,/c)esA, IT.) , ¢ =espIT,, B, =p, /P, P.=0p./P,,
A=on/n, t=TIT,, p=c(T.m)"*/eB, B=n(T, +T,)/B?, and Q, =w—-k-V,. Here
Eq.(11) is the adiabatic electron response and it reduces to the Eq.(10) in Ref.(5) when V.
and V,, aretaken to zero. Subsequently, we expand the equilibrium quantity at the rational

surface (r,), e.g.,

X

k Rk
Q :Q"'ﬁssv//vi//xz_z_nﬁs\uvux' (16)

where Q=w-k-V,(ry), V,,(r;) and V, (r,) are respectively the equilibrium parallel
and perpendicular fluid velocity of ions, s=(r,/q)(cq/or), s,, =(r/V;,)(V,,/0x), and
s, =(r,/V, )0V, 10x). Here the frequency, speed, and spatial scale are normalized to
0y, =2K T,/eBR, c, = pw,, and p, respectively. Then, using the local approximation

(6 =0) we obtain a set of eigenequations from Egs.(9)-(15),
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In EQ.(17), the drift-like frequency associated with equilibrium current density J,
w,=0,,+0, =k,-Jlen,+k, -J/en,, isincluded [6], which, after being normalized to
@, , Can be written as,

R R R R

aqy :—[T(L—n+L—Ti)/2+(L—n+L—Te)/2](SX+$J”X2), (188.)
R R R R
@5, :_[T(L_n+L_Ti)/2+(L_n+L_Te)/2](1+SMX) : (18b)

Here s;, and s, are defined as s,;, =(r;/J3,)(@,/0x) and s;, =(r,/J, )0, /0X),

respectively. The other quantities in Eq.(17) are conventional. The set of equations (17a) and

(17b) is a singular one due to the resonance at rational surface (x=0 or r,). It is solved
numerically by a standard shooting code procedure under the boundary conditions
¢(X— ) >0 and ,Z\,,(x—>ioo)—>0. The singular point (x=0) and its vicinity are

carefully treated with the singular initial value method [7].
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In the following, we mainly study the perpendicular velocity shear s,, , magnetic shear

s, and finite g effects on the instability. Figs.1 and 2 show the real frequency and growth

rate as the function of perpendicular velocity shear for different magnetic shear. S istaken

to be 0.005 in Fig.1 but be 0.012 in Fig.2. Here the dashed and solid lines represent the real

frequency and growth rate while the curves 1 and 2 do the cases s=1.1 and s=0.9,

respectively. It is found that there exists athreshold of s, , a which the growth rate tends to

zero. Qualitatively, the conclusion is in agreement with the experiments [1] and simulations

[8]. It seems that the perpendicular velocity shear threshold, obtained here, increases with

decrease of magnetic shear. Experimentally, core transport barriers exist in the region where

the perpendicular velocity shear is considerably large even if the magnetic shear is much

small. Thus, the present result is not incompatible with experiments. Comparing Fig.1 with

Fig.2, we can note that the increase of £ reduces the growth rate but increases the velocity

shear threshold.
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Fig.1 Real frequency (solid line) and growth rate (dashed
line) vs perpendicular velocity shear for different magnetic
shear s=1.1(curve 1) and s=0.9 (curve 2). g=1.5, kyp=0.036,
Vi///CS:O.S, Sy=-3, Villcs:O.l, $3=0.0, $;,=0.0, R/anlo,
R/LTi::LO, R/LTe:].O, =10, and ,B:OOOS

w and v
o
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Fig.2 Real frequency (solid line) and growth rate
(dashed line) vs perpendicular velocity shear for
different magnetic shear s=1.1(curve 1) and s=0.9
(curve 2). The other parameters are the same as

Fig.1 except that f=0.012.

In addition, we study the parallel velocity shear effects. It is found that the parallel

velocity shear enhances the instability, which has been shown in the previous work [9].

Furthermore, the preliminary calculations show that the perpendicular current density shear

S;, suppresses the instability while the parallel current density shear s;, strengthensit.
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