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Abstract. A generalization of diffusive (Fickian) transport is considered, in which particle motion is described by
probability distributions. We design a simple model that includes a critical mechanism to switch between two
transport channels, and show that it exhibits various interesting characteristics, suggesting that the ideas of
probabilistic transport might provide a framework for the description of a range of unusual transport phenomena
observed in fusion plasmas. The model produces power degradation and profile consistency, as well as a scaling
of the confinement time with system size reminiscent of the gyro-Bohm/Bohm scalings observed in fusion
plasmas, and rapid propagation of disturbances. In the present work we show how this model may also produce
on-axis peaking of the profiles with off-axis fuelling. It is important to note that the fluid limit of a simple
model like this, characterized by two transport channels, does not correspond to the usual (Fickian) transport
models commonly used for modelling transport in fusion plasmas, and behaves in a fundamentally different way.

1. Introduction
Transport in fusion plasmas is commonly described using Fickian diffusive transport models,
in which the (particle and heat) flux is a function of the local parameters (gradients). A large
body of literature testifies to the existence of phenomena that are difficult to fit into this
framework (e.g. [1, 2]). Such phenomena include: Bohm scaling of confinement
(approximately linearly proportional to the system size L, whereas standard diffusion would
predict ∝ L2); power degradation (i.e. the confinement time decreases with increasing heating,
P); profile consistency or stiffness of profiles, making the plasma profiles relatively
insensitive to the power deposition, even leading to profile peaking during off-axis heating
(e.g. [3]); and rapid phenomena in which the core plasma seems to respond almost
instantaneously to e.g. edge cooling (much faster than the diffusive timescale permits) (e.g.
[4]). The common approach to the problem of modelling these phenomena is to include
additional convective terms in the diffusive model. However, the required convective terms are
usually much larger than the available physical mechanisms (e.g. the Ware pinch), and vary
from case to case, so that this approach does not permit making accurate predictions. The
current paper re-examines the basic hypotheses underlying the usual modelling procedure and
suggests an alternative.

2. Diffusion revisited
In this paper, we reconsider the foundations of the standard diffusive model in the framework
of the Continuous Time Random Walk (CTRW) formalism [5,6]. As is well known, diffusion
is based on Brownian motion, in which individual particles remain a certain (random) time at
their current position and then take a (random) step. These waiting times and steps are drawn
from probability distributions, which we assume statistically independent for simplicity. Let
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ψ(t-t’) be the waiting time distribution, giving the probability that a particle, having arrived at
position x’ at time t’, takes a step at time t ≥ t’, and p(x-x’,x’,t) the step distribution, giving the
probability at time t that a particle takes a step from x’ to x. Even though the step distribution
p may depend on (x’, t), e.g. via a dependence on the local plasma parameters, it can be shown
[7] that a collection of such particles will obey the Generalized Master Equation:
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where n(x,t) is the particle density. The function φ is related to the waiting time ψ above [7].
Naturally, if the waiting time is chosen exponential, ψ(t-t’) = exp[–(t-t’)/τD]/τD, and the step
distribution Gaussian, p(x-x’,x’,t) = exp[–(x-x’)2/4σ2]/2σ√π, normal Fickian diffusion is
recovered and Eq. (1) is reduced to:
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in the limit of small σ. However, the CTRW formalism allows other distributions ψ and p.
This immediately raises the question of whether the standard choice of exponential waiting
time distributions and Gaussian step size distributions is always justified. The Gaussian
distribution is the limit distribution of the sum of independent identically distributed (i.i.d.)
random variables whose individual distribution has finite width. Removing the latter
restriction, the sums of general i.i.d. variables are distributed according to the Lévy
distribution. Thus, the Lévy distribution is a natural generalization to the Gaussian
distribution. It is characterized, among other things, by a parameter α. The Lévy distribution
at α = 2 is just the Gaussian distribution, with an exponential tail for large x, p(x) ∝ exp[–x2],
but for 0 < α < 2 the tail is algebraic, p(x) ∝ x–α–1. This tail has profound consequences, since
it leads to long-range correlations and general unusual (“non-local”) behaviour. In particular, it
means that the boundary conditions cannot be ignored (up to a constant) when constructing
steady state solutions.

The question whether Lévy distributions are relevant for transport in fusion plasmas
can only be partially answered at this moment. Generally speaking, if fusion plasmas are
governed to some degree by Self-Organized Criticality (SOC) and transport is avalanche-like,
as suggested by various authors [8,9], Lévy distributions can model the supercritical transport
channel. Furthermore, Lévy distributions have been observed in numerical simulations of
resistive pressure-gradient driven turbulence using particle tracking methods [10, 11].

 3. Toy model for transport
To test what effect these assumptions might have on transport, we have constructed a toy
model with an exponential waiting time distribution (for simplicity and to retain Markovian
temporal behaviour) and a Gauss/Lévy step distribution. To produce the required profile
consistency, we also included a critical gradient mechanism. Thus, we design our 1-D, single-
field toy model such that:

|∇n| < [∇n]crit: “normal” transport,  p = Gaussian
|∇n| ≥ [∇n]crit: “anomalous” transport, p = Lévy

A Generalized Master Equation can be derived for this model [7]:
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where the step distribution p depends on local parameters via a function f. We also include an
external drive S(x) to compensate for continuous edge losses.

Recently, we have shown [12] that the fluid limit of this nonlinear CTRW model leads
to a fractional differential equation. Here and for simplicity, we illustrate this limit for the
particular situation when the supercritical transport is described by a Gaussian. In this case,
the fluid limit of Eq. (3) is:
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Here, H is the Heaviside step function and σ1 and σ2 are the widths of the two Gaussians. The
time average of the square bracket gives the effective diffusivity. This diffusivity, resulting

from the combined effects of the two
mechanisms, has a strong radial dependence,
as shown in Fig. 1.  Note that Eq. (4) differs
from the usual diffusion equation, Eq. (2).
Eq. (4) produces both an effective
diffusivity and a pinch, its velocity being
equal to the radial derivative of the effective
diffusion. This type of equation is typical
for avalanche-like transport processes [13].
If the supercritical mechanism involves a
Lévy step distribution, Eq. (4) is more
complicated because it then leads to a
fractional derivative in space [12].
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Fig. 2 – Power degradation. Fig. 3 – Scaling with system size.

4. Numerical results
With an appropriate choice of parameters, this system will self-regulate its gradient around
the critical value for a range of values of the drive, leading to stiff profiles. Fig. 2 shows the
confinement time obtained from a power scan. It is seen that the critical gradient mechanism
indeed leads to power degradation. In addition, at low power the confinement time scales
diffusively (τ ∝ L2), whereas as high power the system scales anomalously (τ ∝ L

α
), which is

reminiscent of Bohm/gyro-Bohm scaling behaviour. This is clarified in Fig. 3, which
schematically shows the scaling behaviour of Fig. 2 for various different choices of the system
size L (∝ 1/σ2). In the critical region between the two power extremes, the confinement time is
seen to depend exclusively on the fuelling rate S and the critical gradient, and not on either the
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step size or the waiting time. Since any (effective) diffusion coefficient must always depend
on the step size and the waiting time, this means that the system behaviour cannot be
described by an (effective) diffusion model in the critical region.

The stiffness of the model also leads to the fast propagation of disturbances, e.g. a
“cold pulse” (produced by a sudden reduction of n at the edge) was found to travel almost
three orders of magnitude faster than what would be expected from a diffusive estimate [7].

A sensitive test of non-standard behaviour is provided by an off-axis fuelling
experiment [14]. Figs. 4 and 5 show the response of the profile of n for two off-axis fuelling
amplitudes. At low S, the system is not very critical and responds almost diffusively; but at
high values of S, the system is critical and the profile peaks, even though the source S is zero
in the centre. This behaviour is due to the self-regulation of the profile around its critical value,
in combination with the finite particle excursions permitted by the step distribution. Due to
the latter circumstance, particles can move in the direction of the gradient, which would be
impossible in the usual diffusive limit (in which the single-step particle excursions are
assumed to be negligibly small).
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In another numerical experiment, we found
that the amount of profile peaking depends
on the inverse of the size of the central non-
critical region, as shown in Fig. 6. In other
words, the peaking is reduced when the
diffusive transport channel is enhanced. This
behaviour is possibly in agreement with
actual fusion plasma experiments in which
the collisionality was varied [15].

 5. Discussion
In this paper, we have presented a straight-

forward generalization of the common diffusive transport model. The generalization consists
of allowing the particle step distributions to include Lévy distributions. Based on this idea, we
have designed a numerical 1-D, 1-field toy model, which incorporates a critical gradient
mechanism to switch between normal (Gaussian) transport and anomalous (Lévy) transport.
The model was shown to produce interesting behaviour: (1) stiff profiles, (2) power
degradation, (3) system size scaling reminiscent of Bohm/gyro-Bohm behaviour, (4) rapid
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transport events, and (5) on-axis profile peaking during off-axis heating. This behaviour is in
qualitative agreement with observations in fusion plasmas.

The fluid limit of this model leads to a fractional differential equation. Even in the case
in which both transport mechanisms are Gaussian, the partial differential equation is not given
by the simple diffusion equation, and it combines the effects of diffusion and a pinch. Such a
combination is typical for avalanche-like transport processes.

The model needs to be extended to at least two fields (n and T) before any modelling of
actual experiments can be attempted; this work is in progress.

An important message from this work is the following. Even under the assumption
that the current model is essentially correct, it is still possible to model any individual
experiment using the conventional description (involving effective diffusion and convection
coefficients) [7]. However, the long-range correlation of the Lévy distributions and the non-
linearity due to the critical mechanism introduce a fundamental dependence of these effective
parameters on the system size L. Therefore, the effective diffusion and convection coefficients
obtained in a system of size L cannot be used to predict the outcome of an experiment in a
system of size L’ ≠ L! The only correct way to generalize the results of the transport analysis
to systems of any size is therefore to determine the probability distributions directly, and use
a description in terms of a Master Equation. Also, a model based on the conventional Fickian
description is not capable of both matching the steady state situation and reproducing the
transient effects the toy model exhibits. In this sense, transient transport experiments may
provide a definitive test of these ideas.
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