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Abstract. The Hasegawa–Mima equation is the simplest nonlinear single-field model equation that cap-
tures the essence of drift wave dynamics. Like the Schrödinger equation it is first order in time. However
its coefficients are real, so if the potential ϕ is initially real it remains real. However, by embedding ϕ in
the space of complex functions a simple Lagrangian is found from which the Hasegawa–Mima equation
may be derived from Hamilton’s Principle. This Lagrangian is used to derive an action conservation
equation which agrees with that of Biskamp and Horton.

1. Introduction

Recent interest in zonal flow generation via the mechanism of modulational instability
of plasma drift waves [1, 2] motivates revisiting Whitham’s [3, 4] averaged-Lagrangian
approach, which provides an elegant and efficient method for deriving equations describing
wave-mean flow interactions [5].

The one-field Hasegawa–Mima (HM) equation [6, 7] provides a simple theoretical start-
ing point for describing the nonlinear interaction of drift waves and zonal flows and is
appropriate for describing some experimental régimes [8, 9]. The same equation also
describes Rossby wave turbulence in planetary flows [7].

A Lagrangian for drift waves in the linearized approximation has been found by Mattor
and Diamond [10], but how to extend this to the nonlinear Hasegawa–Mima equation has
not been clear. In this paper we present a complex-field Lagrangian whose Euler–Lagrange
equation reduces to the HM equation in the invariant subspace of real functions.

The HM equation is an equation for the evolution in time, t, of the electrostatic
potential ϕ(x, y, t). Here x and y are Cartesian coordinates describing position in a
cross-sectional domain Ω of a plasma with a strong magnetic field predominantly in the
z-direction, ẑ is the unit vector in the z-direction, ωc is the cyclotron frequency and
n0(x, y) is the background electron density, assumed independent of poloidal angle. In
slab geometry Ω is taken to be rectangular and y to be the poloidal direction, so that n0

is a function only of x. If in toroidal geometry we take Ω to be a circular domain and
work in polar coordinates, then n0 is taken to be a function of r ≡ (x2 + y2)1/2.
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2. Lagrangian

We consider the action integral

S =

∫ t2

t1

dt

∫
Ω

d2x L(x, y, ϕ∗, ϕ, ϕ∗t , ϕt, ∇ϕ∗, ∇ϕ,

∇ϕ∗t , ∇ϕt,∇2ϕ,∇2ϕ∗,∇2ϕ) , (1)

where * denotes the complex conjugate, ϕt ≡ ∂ϕ/∂t, ∇ϕ ≡ x̂∂ϕ/∂x + ŷ∂ϕ/∂y, and L is
the Lagrangian density

L =
i

2
(ϕ∗ϕt − ϕ∗t ϕ) +

i

2
(∇ϕ∗·∇ϕt −∇ϕ∗t ·∇ϕ)

+
i

2
(ϕ∗∇ϕ− ϕ∇ϕ∗)·ẑ×∇ ln

ωc

n0

− i

2
∇ϕ∗·∇ϕ×ẑ ∇2(ϕ∗ + ϕ) , (2)

the first term being similar to that of the Lagrangian for the Schrödinger equation [11].
Hamilton’s Principle is the requirement that S be stationary for arbitrary variations of

ϕ and ϕ∗ (except at the initial and final times t1 and t2, and on the boundary ∂Ω, where ϕ
and ∇ϕ and their complex conjugates are held fixed). The field and its complex conjugate
are variably independently because the real and imaginary parts are independent. This
principle implies the general Euler–Lagrange equation

∂

∂t

∂L
∂ϕ∗t

+ ∇· ∂L
∂∇ϕ∗

− ∂L
∂ϕ∗

− ∂

∂t
∇· ∂L

∂∇ϕ∗t
−∇2 ∂L

∂∇2ϕ∗
= 0 , (3)

With our specific form of the Lagrangian density this leads (on dividing through by
i) to

∂

∂t
(∇2ϕ− ϕ)−∇ϕ×ẑ·∇

(
∇2Reϕ + ln

ωc

n0

)
+

1

2
∇2(∇ϕ∗·∇ϕ×ẑ) = 0 . (4)

The last term vanishes when ϕ is real, thus recovering the Hasegawa–Mima equation.

3. Action conservation

Considering the case of a drift wave in the form of a coherent wavetrain we use a
nonlinear Wentzel-Kramers-Brillouin (WKB) trial function of the form

ϕ = ε−1Φ(εx, εy, εt) +
∑
±

{αA±
1 (εx, εy, εt) exp[±iε−1θ±(εx, εy, εt)]

+ α2A±
2 (εx, εy, εt) exp[±2iε−1θ±(εx, εy, εt)] + O(α3)} , (5)

where α is an expansion parameter for the amplitude, which we here distinguish from
the WKB expansion parameter ε. The phases θ+ and θ−, the slowly varying fundamental
amplitudes A±

1 , and the second harmonic amplitudes A±
2 are all treated as independently

variable when applying Hamilton’s principle. The slowly varying frequencies and wave
vectors are defined as ω± ≡ −∂t(θ±/ε) = O(1) and k± ≡ ∇(θ±/ε) = O(1), respectively.
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We have also included a slowly varying O(1) background potential Φ to represent zonal
flows.

In the spirit of Whitham [3, 4] we substitute Eq. (5) into Eq. (2), retaining only leading
order terms in ε. Rapidly varying terms such as exp±i(θ+ + θ−)/ε make an exponentially
small contribution to the action, Eq. (1), by the Riemann–Lebesgue lemma [5]. We can
thus safely discard such terms and replace L by the averaged Lagrangian density

L̄ = (1 + k2
+)(ω+ − k+·V)|A+|2 − (1 + k2

−)(ω− − k+·V)|A−|2

−(k+|A+|2 − k−|A−|2)·ẑ×∇ ln
ωc

n0

, (6)

where V is the (nondimensionalized) background E×B drift

V ≡ ẑ×∇ReΦ. (7)

Variation of the amplitudes in the Lagrangian density Eq. (6):

∂L̄
∂|A±|

= 0, (8)

reproduces the dispersion relation of drift waves [7]:

ω± − k±·V =
k±·ẑ×∇ ln ωc

n0

1 + k2
±

. (9)

The averaged Lagrangian density does not have an explicit dependence on θ±. There-
fore the Euler–Lagrange equation for variation with respect to θ+ is in the form of a
conservation equation

∂

∂t

(
∂L̄
∂ω±

)
+ ∇· ∂L̄

∂k±
= 0 , (10)

where N is the wave action density

N =
∂L̄
∂ω±

= (1 + k2
±)|A±|2 . (11)

We note that this definition of the wave action density differs by a factor of ω from that
found by Mattor and Diamond [10] and Brizard [12], who use Lagrangians derived for
linearized drift waves. However, it agrees with the result of Biskamp and Horton [13],
who do not use the Whitham variational method and conclude that wave energy and
action are equal for drift waves.

Our result thus shows that the discrepancy between the two wave action expressions
in the literature does not arise from the use of the variational method per se, but from the
form of the Lagrangian adopted. For time-independent background quantities, both wave
energy and action are conserved, so the conservation laws derived are not inconsistent.
Rather, it is the naming of the conserved quantities that is in question in that case.

When the background quantities are time-dependent, however, energy can be ex-
changed between the wave and background subsystems [5] and thus wave energy is not
conserved but wave action remains a conserved quantity. Thus the full resolution of the
discrepancy requires an analysis of the time-varying-background case. The time variation
we have allowed in the background flow potential Φ is sufficient to expose the problem,
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even if n0 and ωc are constant in time.

4. Conclusion

The Lagrangian we have found has the attraction of being very simple, yet, unlike
those in Refs. [10, 12], it is nonlinear. As it leads to the Hasegawa–Mima equation, in the
case of real initial conditions, it is as physically correct as this equation and can thus be
used, for instance, to derive mode-coupling equations. However, the action-conservation
discrepancy suggests caution should be adopted in using it for deriving wave-background
interactions such as zonal flow generation.

The fact that the Lagrangians of Mattor and Diamond and of Brizard are derived from
physical Lagrangians, rather than constructed ad hoc as ours was, makes it more likely
that their form for the wave action is correct. However, further work remains to be done
to resolve this issue.
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