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Abstract.  It is well known from impurity seeding experiments in several limiter tokamaks that the plasma may 
bifurcate into an improved confinement mode, the so called RI mode.  In this mode, the confinement improvement 
is associated with density and temperature peaking and stronger velocity shear. In this paper we propose a novel 
model for the RI mode. It is demonstrated that radiative effects from impurities distributed in a poloidally 
asymmetric manner lead to significant density and temperature perturbations on magnetic surfaces. These, in turn, 
interact with theta dependent toroidal field variations to produce a mean divergence of the stress tensor driving 
strong toroidal flows. The resulting enhanced toroidal velocity shear on the outer radiative layers produces a 
stabilizing effect on the instabilities like the drift resistive ballooning mode, drift trapped electron mode and the 
ion temperature gradient mode. By an investigation of the turbulent particle flux as a function of the density 
gradient for various values of the radiation asymmetry parameter, it is shown that the plasma can undergo a 
bifurcation into a better- confined peaked density state.  
 
1. Introduction 
The Radiative improved (RI) mode, the improved confinement mode for limiter tokamaks 
arising due to injection of impurities like Neon, Argon etc. This confinement mode was 
discovered originally in the ISX-B tokamak [1,2]. Later it was thoroughly reinvestigated in the 
pioneering research on the TEXTOR-94 tokamak [3-6]. The RI mode is characterized by more 
peaked density, temperature and toroidal velocity shear profiles, peak densities well above the 
Greenwald density limit, confinement times close to the ELMy H- mode values and a density 
scaling like the neo-Alcator scaling.  
  
The present models of improved confinement in the RI mode are largely based on a reduction 
of the growth characteristics of the toroidal ion temperature gradient (ITG) mode, when the 

plasma effZ  increases [7].  Experimentally there is evidence [8] that the BE
rr

×  shear rotation in 

the impurity-injected plasma is much stronger than in the normal plasma, yet there seems to be 
little effort either to explain this feature or to use it to stabilize the ITG mode.  In all likelihood, 
both effects are taking place, namely a direct reduction of the ITG growth rate due to increase 
of effZ  and a suppression of the turbulence due to the increased velocity shear of these 

discharges.   
 
This paper is devoted to exploring the mechanisms associated with impurity injection, which 
may influence the BE

rr
× velocity shear profile.  The mechanism that we propose is directly 

related to impurity injection.  When an impurity like Neon is injected in typical L - Mode 
plasma, it radiates copiously till it reaches the Lithium and Beryllium like states.  This typically 



happens in the outer %25%20 − of the discharge radius.  The impurities are typically not 
distributed symmetrically in the poloidal direction but show in – out and up – down 
asymmetries [3]. Quantitatively, the asymmetry in concentration could be as much as a factor 
of two.  This leads to strong poloidal asymmetries in the radiation from the plasma even in a 
regime where the MARFE is   absent (i.e., in the thermally stable regime when the power lost 
by impurity radiation is well below the input power). An asymmetrically radiating plasma 
produces temperature and density perturbations on the magnetic surface that interact with the 
theta dependent toroidal field variations to produce a mean divergence of the stress tensor 
which drives significant toroidal flows on these surfaces. An important feature of these flows is 
that they have significant magnitude and exist only in the radiative region.   This then has the 

effect of producing a significantly enhanced toroidal velocity shear ( /
,iU φ )  (where prime 

denotes differentiation in r ) near the radiative layer.    This, in turn, leads to an increase of the 
radial electric field strength through the radial force balance equation 

iiiir UUBBrPeTBE θφφθφ −+∂∂= )/(/ln)/(/ .  That is then responsible for an increase in the 
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×  rotation velocity shear )1()/4()/( 22/
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 is the peaking factor, )/ln)(/(83.1, rTeBTU iii ∂∂−≈ φθ  is the 

poloidal ion velocity in Pfirsh-Schlüter regime [9-10]).  Now it is well known that BE
rr

×  shear 
rotation can suppress the tokamak background turbulence. Furthermore, a consensus is 
emerging around the view that the turbulence processes in the radiative outer region of a 
tokamak are dominated by the ion temperature gradient (ITG) instability [11], the dissipative 
trapped electron mode (DTE)) [12,13], and high-m drift resistive ballooning mode (DRBM) 

[14].  We thus expect the radiation asymmetry driven BE
rr

×  shear flows to suppress these 
instabilities in the radiative edge plasma.  This leads to a reduction in particle and thermal 
convective fluxes which locally sharpens the density and temperature profiles.  If this 
sharpening of the profiles leads to further suppression of the turbulence, the plasma may 
bifurcate into a better confined and highly peaked density profile state.   
 
 
2.  Basic Equations  
 
We start from Braginskii’s two fluid equations including the Mikhailovskii and Tsypin 
corrections of the stress tensor. These equations are  
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where  Eqs. (5) – (7) are the ion continuity, momentum and energy equations, respectively, iπ

r
 

is the ion stress tensor given by Braginskii [15] and Mikhailovskii and Tsypin[17],  

ixiiiiii TnTTq ∇×+∇−∇−= ⊥⊥

rr
ˆ//// κκκ   is the diffusive ion thermal flux, )/(9.3// iiiii mTN νκ =  



and i⊥κ  are the parallel and perpendicular diffusion coefficient, respectively and 

iiiixi mTN Ω= 2/5κ ; other notations are standard. 

 
We assume the poloidal variation of the radiation power density  ( radQ ) is of the form 

)]cos(1[ 1
)0( ∗−∆+= θθradrad QQ , where θ  is the poloidal angle, 0=θ  denotes the low field 

side mid-plane, ∗θ  is the location of the maximum radiation, and 1∆  is the degree of 

asymmetry. In the limit, 1)/)(/( 22
, >Ω RqrL

eTiee ν  (i.e., parallel electron thermal conduction 

dominant over convection processes), the poloidally asymmetric electron temperature 
perturbation is given by steady-state heat balance equation, 
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)0( rHrQq rade +−∆+−=⋅∇ ∗θθ
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where eeeee TTq ////,, ∇−∇−= ⊥⊥ κκ

r
 is the total heat flux, )( //,, ee κκ ⊥ is the perpendicular (parallel) 

electron thermal conductivity [15], eeeee mTN νκ /2.3//, = , e⊥κ  is determined by anomalous 

processes and )(rH  is the local plasma heating rate. 

The generalized co-ordinate system ( nbp ˆ,ˆ,ˆ ) is used, which is tied to magnetic field. Here 

BBn /ˆ
r

= is the unit vector along the magnetic field lines, p̂  is the orthogonal to the magnetic 

surface, and pnb ˆˆˆ ×= . The unit vectors nbp ˆ,ˆ,ˆ  are related to the flux co-ordinates 

φχψ eee ˆ,ˆ,ˆ (where ψ is the poloidal magnetic flux, χ  the generalized poloidal angle and φ  is the 

toroidal angle) by 
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where χφψ = Bhh /1 , χχ = JBh , φχψ= hhhJ is the Jacobian of the transformation ( φχψ→ ,,r

r
), 

χφχφφχ=ν RBrBBhBh /~/ is the pitch of the field lines , ∫ χν= dq   is the safety factor. We 

note that )cos1(0 χε+=φ Rh , )cos1(0 χε−= φφ BB  and θχ ~  in case of large aspect ratio 

tokamak with circular cross section, where 0/ Rr=ε  is the inverse aspect ratio, r , and 0R  the 

minor and major radii, respectively. We consider the scaling relevant to the edge of tokamaks 
edge 
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and 
 

 TNiioncx LL ,~;~ ψν≤νν                                                                          (11)    

 
where iν  is the ion collision frequency, TNLL ,~ψ   the plasma density or temperature gradient 

scale, )( ei mm  the ion (electron) mass, iii mTc /=  the ion thermal velocity, iii ca Ω= /  the ion 

Larmor radius, ii meB /=Ω  the ion cyclotron frequency, and µ  the small expansion parameter. 



    
3.  Neoclassical Toroidal Flow  
 
Summing up the toroidal component of the ion and electron momentum equations yields the 
radial current density  
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Combining Eqs. (5) and (12)  and integrating the resulting expression over magnetic flux 
surfaces leads to the relation 
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We neglect the momentum flux driven by background turbulence, toroidal momentum transfer 
due to neoclassical radial convection effects and the standard charge exchange damping with 
neutrals due to recycling from wall. The averaged over magnetic flux surfaces, the stationary 

(i.e. 0/ →∂∂ t ) equation for )0(
iUφ  may be written as 
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The contribution from the off diagonal tensor can be written in leading order as  
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For 0,~,~ 2 ≈iiiii UcUcU ψχφ µµ , the Eq. (15) can be rewritten as  
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where )0()1( / jji Ppp = , )0()1( / jjj Nnn = , )0()1( / jjj Ttt =  and )0()1( / eTeφφ =   are the 

normalized perturbed variables. For 1~1 <<∆ µ , the poloidal variation of the electron 
temperature due to asymmetric radiation in an equilibrium state can be obtained from steady-
state heat balance equation. The solution is  
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where )0(
//,

)0(22
1

)0()0( /)( eerad TRqQr κδ ∆= . In the large mobility limit ( 0/ →ie mm ), the theta 

dependent electron temperature perturbation combines with the parallel electron momentum 
equation in the leading order (i.e., 071.0 ////// =∇+∇+ eeee TNPEeN ) and results in a modified 

electron adiabatic relation given by 
  

)cos(17.1 )0()1()1( ∗−−= θθδφτ ni ,                                                                        (18)  

\ 

where eii TT /=τ , )1()1()1( ~~ nnn ei  (quasi-neutral condition). Similarly the parallel ion 

momentum equation to leading order results in 
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Combining Eqs. (16) – (19), the stationary equation for )0(
,iU φ  is then written as 
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where 

iTii LRrTR 2/)2/ln( =∂−∂=ε . Note that in the absence of asymmetric radiation, we 

recover the results of Classen et al [10] for the toroidal flow.  Among the radiation asymmetry 
driven terms the dominant contribution to toroidal velocity shear comes from the second term 
of Eq.(20) which is multiplied by 4.45. The physical origin for this term is a component of the 
divergence of the stress tensor proportional to 
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confinement time and fλ  is the electron mean free path . 

 
We now apply our results to the experimental observations of RI mode in typical TEXTOR-94 

discharges [3,4,5,6]. In RI-mode, the TEXTOR-94 edge parameters are: eVTi 150)0(
= , 

eVTe 80)0(
= , 319)0( 103 −×= mN i , mR 75.1= , ma 46.0= , mr 35.0= , TB 25.2= , 2=iA , 



5.1=effiZ . From the ion temperature 

profile [7] the value of 
mLrT

iTi 05.0~)/ln( 1 =∂−∂ −  at 

mr 35.0= . In Fig. (1) we have 
plotted the normalized toroidal flow 

[ iiT crUL
i

/)/( , ∂∂− φ ] as a function of 
∗θ  for various values of )0(δ  and 

fixed a value of 5.1=effZ . This figure 

demonstrates that the toroidal flow 
may be significantly enhanced by the 
asymmetric radiation even if the 
asymmetric temperature perturbation 
is less than %1.0  (this corresponds to 
a radiation asymmetry parameter 1∆  
in the range of about ten per cent). 
 
We now present a semi-quantitative 

explanation of how a small poloidal asymmetry in the radiated power could change the basic 
characteristic of L-mode discharges in a tokamak and then lead to a. L – RI mode transition. 
We follow the basic method used by Tokar [7] to study bifurcations of the tokamak plasma 
through the stationarity condition of the continuity equation describing the balance of sources 
and convective fluxes due to various components of the turbulence. We consider a simple case 

where the spatial symmetry breaking term due to BE
rr

× shear rotation reduces [20-21] the linear 
growth of the instabilities (i.e., ITG mode, DTE mode inside edge and DRBM in the outer edge 
of the plasma) and modifies stationarity condition in the continuity equation giving a new 

expression for the peaking factor [7]. In the presence of BE
rr

× shear rotation, the linear growth 
rate of the background instabilities have the general form 2lnln Ωγ−γ=γ , where lnγ is the 
linear growth rate, the last term is the shear damping rate, Ω  is the average radial symmetry 

breaking term [20, 22], ln/ / γ≡Ω θ kE WUk , θk , and kW  are the poloidal wave vector, radial 

width of the instability.   
We now derive the equation for peaking factor )/1( ip η= , which comes from balancing the 

sources with the turbulent fluxes in the continuity equation. As stated earlier we assume   that 
the ITG mode, DTE mode and the high-m DRBM dominate the transport inside the edge. The 
linear growth rates of these modes, without nonlinear damping, are well known and given as 

follows: (a) the ITG growth rate [11] has the form 2Ωγ−γ=γ ITGITGITG , )(0 pFITGITG γ≅γ , 

)/36.125.017.01()( 2
ii pppF ε−ε−−= , 2/1

0 )/(2 iss
ITG Rck ερ=γ θ , 5.0≈ρθ sk , and 

ln2/2ln /)( γ><≈γ≡Ωγ × EBE U  is the flow 
shear damping rate, (b) DTE mode growth rate [7,12-13] 

)/ˆ5.0()/()/(8 2 εε−νεερ=γ θ itreiess
DTE spfRrRck  and 5.0≈ρθ sk  (c) the linear growth rate 

of high-m DRBM )/2( ns RLc≈  and 2/12/12/121 )/)(/()2( pmmcRqk iieeesr ενρπ≈
−  is the 

radial correlation length [14]. The particle transport due to these instabilities is estimated from 

 

FIG.1. The plot of the normalized toroidal flow 

 as a function of  ∗θ  for  5)0( 100.1 −×=δ  (solid line), 
5)0( 100.5 −×=δ (dashed line),  

4)0( 100.1 −×=δ  (dashed-dotted line) and 5.1=effZ . 



mixing length argument 2ln / θγ≈ kD AN . The equation for peaking factor p , which emerges by 

balancing the particle fluxes due to ITG, DTE and DRBM modes with the sources, is given as 
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where the first term corresponds to particle flux due to ITG mode, second denotes the reduction 
in flux due to flow shear damping, third term represents the flux due to dissipative trapped 
electron (DTE) mode, the last term represents the inward particle flux originating from the edge 

(i.e., sec/105.2~ 219 ⋅× mS e ) [7], 2
0 )/(8 RcN isse ερ=Γ  and 5.0~sk ρθ (assumed). If BE

rr
×  

stabilization is strong enough to completely stabilize any of three instabilities the contribution 
to the particle flux due to that instability is taken as zero.   
    
Fig (2) gives a plot of )( pG versus p  for a fixed value of 5.1=effZ  and various values of the 

radiation asymmetry parameter 1∆ .  It 

is noted that for low values of 1∆ , 
)( pG  goes to zero at 3 values of p 

including a low value; thus the 
discharge can come to a stable 
stationary state with a low peaking 
factor and stay there without any 
bifurcation.  This is because we have 
chosen a value of effZ  which is lower 

than that of Tokar [7] so that the 
bifurcations studied by him are not 
operative. As we increase the value of 
the radiation asymmetry parameter 

1∆ , even for these lower values of 

effZ , the plasma can display 

bifurcations into a peaked density 
state when 1∆ exceeds about 9 
percent; in these cases there is only 
one real solution to the equation 

0)( =pG  and that results in a relatively high value of p .  The basic reason for the density 

peakedness is the considerably increased velocity shear at higher values of 1∆  which strongly 
stabilizes the turbulence and hence requires higher values of density gradient for a balance of 
the weakened turbulent fluxes   and the original sources in the continuity equation. 
 

In conclusion, we have shown that small poloidal asymmetries in the radiation at the edge of an 
impurity seeded tokamak plasma can lead to significant sheared toroidal flow.  These flows 

Fig. 2. Turbulent particle flux  as a function of peaking 
parameter for various values of 5)0( 100.1 −×=δ (solid 

line), 4)0( 100.1 −×=δ (dashed line), 
4)0( 107.3 −×=δ (dashed-dotted line), 4)0( 104 −×=δ   

(dotted line). 



contribute to the stabilization of edge instabilities and lead to the bifurcation of the plasma into 
an improved confinement mode viz. the RI mode.  The bifurcation transition in the presence of 
poloidal asymmetries takes place at lower plasma dilutions than usual .We have carried out the 
calculations in the collisional neoclassical limit which are applicable to the outer %25  of the 
plasma where the radiative effects may   be large.  However, the sheared flow   may extend to 
the plasma interior either    through various possible pinch mechanisms of momentum transport 
e.g. see Ref. [22] or through inward propagation of a front with increased rTi ∂∂ /  and rEr ∂∂ /  

as envisaged in Ref. [23]. 
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