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Abstract. Perturbations in multi-component colli sional impurity seeded plasmas are studied. The influences of
thethermal force heavy ion inertia and finitetime of theimpurity relaxation over ionization states aretaken into
acoount. In the present paper it is $own that the relative spedes motion and the internal friction caused by the
heavy ion inertia together with the thermal forceincrease the sound wave damping significantly. The damping
mentioned above may exceal the viscous damping, sometimes, by factor ten or more. Hence, the sound waves
in the multi-component radiative plasmas are significantly more stable than it has been supposed earlier. In the
present paper it is own that for the marginal stability the thermal forceaction on theimpurity ions transforms
the aperiodic character of the radiative-condensation mode into almost periodic one. The similar effed is
conneded with the finite relaxation time of the impurity distribution over ionization states. Theion inertiaisnot
important for the radiation-condensation mode. The finite relaxation time of heavy ions over ionization states
may also producethe nonlinear self-sustained oscill ations. These oscill ations are examined in compressble
plasmas.

1. Introduction

Many phenomena in the elge tokamak plasmas like Multi-facded Asymmetric Radiation
From the Edge (MARFE), detached plasma regimes, propagation of the perturbations caused
by ELMs etc. are as2ciated with the radiative-condensation mode and the sound waves in
the impurity seeded plasmas (Seg for instance review papers [1-3].) The radiation effeds in
plasmas have been studied for a long time; however, thermal forces and the finite relaxation
time of the impurity distributions over ionizaion states have been investigated only in a few
papers. In particular, the authors of Ref. 4 have found the impurity relaxation time to affed
significantly the growth rate of the radiative-condensation instability as well as the shock
wave propagation under the conditions typicd for many experiments. As own in [5] the
finite relaxation time transforms drasticdly the spedra of thermal-drift modes. As $own in
[6] one can find new slow thermal waves taking into acmunt thermal forces.

finite relaxation time transforms drasticdly the spedra of thermal-drift modes. As $own in
[6] one can find new slow thermal waves taking into acount thermal forces.

The simultaneous influence of the thermal force and the heary ion inertia & well as
of the finite relaxation time of the impurity distribution over ionizaion states, on the
perturbation propagation and on stability conditions is gudied in the present paper. The heary
lon inertiais also taken into consideration. First, the thermal force ad heavy ion inertia caise
the relative motion of spedes, internal friction and consequently additional damping. Despite
of the small impurity concentration, the dfed may be strong for the sound waves becaise the
thermal force is proportional to the parameter z°, and the ion inertia is proportional to the
heavy ion mass M. (Here z is the typicd impurity ion charge for the equilibrium
temperature.) It is siown in the present paper that the new type of damping may exceeal the
viscous damping by fador 10 or more even if the relative impurity concentration is of only a
few percent. Seoond, the finite relaxation time in many cases may be cmparable with the
mode frequency or even higher. Together with the thermal force finite relaxation time shifts
the phases of the temperature oscillations and radiation respedively. Two effeds are the
consequences of thisfad.

I. The frequency of the radiative-condensation instability acquires a red part.. Hence, the
radiative-condensation mode is not purely aperiodic, espeaally for the margina stability. The
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effed was predicted in Ref. [6], but the finite relaxation time mentioned above was ignored.
It is $rown in the present paper that sometimes it may exceeal the thermal force dfed.

ii. The phase shift between the radiation and the temperature oscill ations increases the order
of the differential equation describing the process Hence one can exped the existence of
some nonlinea self-sustained oscillations. The dfed has been predicted in Ref. [8] and
examined for incompresshble plasmas. In the present paper the dfed is examined for more
redistic compressble plasmas.

2. Equations

Using the two most representative ion approximation, developed ealier [7], one may reduce

the full set of equations describing the cabon seeded plasmasto the set of 9 equations:
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The impurity distribution over ionizaion states is represented by two spedes with the
eledric charge numbersz, and z+1. Here

N=S- Ne (nsz + Iﬂlz+1|-z+1)1 (10)
S isthe thermal source L, and L,,, arethe radiation functions of the ions with the dharges
z and z+1 respedively, R! are the thermal forces. M,m , and m, are the impurity ion
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mass the hydrogen ion mass and the dedron mass respedively, v; are the ollisional

frequencies. Other definitions are standard. The ion viscosity 1 is taken into acount. The
impurity and eledron viscosities are negleded. Also, the equality

T=T =T,=T,,=T (19
Isasumed. The plasmais assumed to be opticadly transparent.

The impurity dengity is assumed to be small. Hence, the impurity contributions to the
left hand side of the temperature equation (9) are ignored. On the other hand, the impurity ion
massis sgnificantly higher than the hydrogen mass and therefore hydrogen-impurity friction
may be important even if the impurity concentration is small.

It is interesting to note that the equili brium with a non-zero temperature gradient and
velocities of all spedes equal to zero is impossble. Equation (1) determines the relation for
the densitiesn, and n,,, :

R,.
nz = nz+1 le " (12)
On the other hand, equations (7) and (8) aso determine n, and n,,, as the functions of the
temperature:
zapz+1 -(z+) aaPZ +(z+)R? - ZR™ =0, (13)
X X

Note that, that the set of equations (12-13) together with (9) and (11) is over-determined.
Therma forces R? and R’ are expressd in terms of eledron and badkground

plasmaion temperature gradients (seg for instance, [9]):

R? =n,(0.71z°0T, + AOT,) , (14)

where the fador Adependson z, M and m,. If M >>m one can st A=22z°. Hence

taking into acount (11):

R =32°00T . (19
Substituting (15) into (7-8) one can find for z>>1[10]:
V, =V, (16)

Hence, impurity dynamics may be described with the following equation:
d d
Mn +v, — =
| @ﬁ; | aX @ll
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Here Ny =N, ¥ N, Vi =V, =V, P =P, +P,., Rr =Rf + R/, and
< g5z D +(z+1n,, .
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The averaged impurity charge is determined by the eguation [7]:
a<Z>+V,D<z>:—vz(<z>—zo). (18)

Z+1

Herev,=n,(R,,+J,),and z,=z+1- ———.
z e( z+1 ) ZO RZ+1+JZ

3. Linear analysis

To the linea approximation, one can look for a solution in the form e« .
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Under the wndition zn, <<n, the dedron density n, is approximately equal to the
hydrogen ion one, n, =n, =n. Combination of egs. (2-4) with (15) yields:

, 4 k3c?
+iwH, +—

Here n, n, and T aethe perturbed concentrations and temperature respedively, ¢ =T /m,

and £ =n, /n. The Braginsky viscosity n = L;/LT has been substituted. Also, the goproximate

2A2c? : - iv“wz—' = K22+ 3z§5); (19
|

relation R} = R™ =3<z>? 0T isused.
Usualy, the dedrostatic energy does not exceel the thermal one, e¢p <T. Using the

assumption 3z >>1, one can negled the dedric field for the impurity description. Hence,
equations (5, 6, 17) yield:

(w? +iow, -k Z)n—'—iv,iwﬂ:—Bkzc,zzzf—. (20)
n n
Herec? =T/M.
Inthe linea approximation, eg. (18) yields:
7= V» G T (21)
vV,-iwdInT T

Here Z isthe perturbed part of <z>, z, = z+1—L ;andv, =n_(R,, +J,).

z+1 z
Performing the lineaizaion procedure for temperature ej. (9) one has to take into acount
that the function (10) of thermal sources and sinks dependson T, n, n,, and <z>. Taking

into acount (21),

n
F 2w+|v %&UH'B) %IV _E (22
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I:i oA The Braginsky form for the dedron hea conductivity is used:
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The dispersion relation takes the form:
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2w+iv, K78 3w 2 C

U :%. The dimensionlessvariables are introduced, w/kc, — w etc.
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4. Sound waves

In order to investigate the sound branch one must assume w ~1, 1>> 3, and v; >>w. The

last condition coincides with the validity condition of hydrodynamics. To the first order, one
10

1+&/p)

It coincides with usual sound frequency in multi-component plasmas.

In second order, (23) yields the imaginary part of the frequency:

__ | Imd
ImAw= (1+E/u@ EEHJB %— E (24)

The last two terms in the right hand of (24) (in lradkets) describe the radiation
influence on the mode stability. The finite relaxation time of the impurity distribution over
lonization states is taken into acount. The dfed was discussed briefly in Ref. [4]. The two
first terms correspond to the ollisional damping. The second term corresponds to the usual
lon viscosity. The last damping term appeas as a sequence of the internal friction between
the hydrogen ions and the impurity ones. The first part in the internal bradets appeas due to
the large massion inertia, and the second corresponds to the thermal force Despite of the
inequality ¢z, <<1; the inequalities 5Mé/m>>1 3z, >>1 may be valid. Hence the
collisional sound damping in the impurity seeded plasmas may be significantly higher than in
the pure hydrogen ones even if the impurity concentration is snall. It is possble if

H 5M /m 5
F(é)= \/EM Bl+fM/m +3z) %>1. (25

Braginsky form for the Coulomb collisional frequencies is used here. The ratio of the new
damping rate to the usual viscous one v/s the impurity concentration is $own in Fig.1 for the

carbon sealed (solid line) and nitrogen seeded (dotted line) plasmas. T =60eV, z, =4.5
have been chosen for carbon, and T =100eV, z, =5.5have been chosen for nitrogen.

can find from (23): w? =

i I —

F(&) 10+ ‘-‘..' |

4

Fig. 1. Theratio of the new sound damping to the viscous one for carbon (red line, T=60 €V)
and for nitrogen (blue line, T=100 eV)



6 TH/P5-26

The two ion approximation is valid with a good acaracy for these temperatures.
One can seethat the stability region for the sound waves is sgnificantly wider than it
was assumed ealier.

5. Radiation-condensation mode.

The opposite limit, w<<1, corresponds to the radiation-condensation mode. The viscosity
may be omitted. Asuming w~ g ~v,~v, €c, w/v,>>1, C=2 and ignoring the third
term in the right hand of (32) one can get:

5w+iEX—v dz, "—2%325"—':0. (26)

“dInTv, -iw v,

Here A = x _k*-v, +v_ +v, . Thelimit case v, >>w was examined in Ref. [6]:

, dz, dz, f v
100J=—|B)\—v v Ht —B\—v —0 y H—BO 2y, 2
O ‘dinT ZD\/ 0 “dinT *O OZOuv,i (27)

For many pradicaly important conditions the opposite cae v, << w is more interesting. It
yields:

1000 = —iA i\/—AZ—loc%dﬁTonvz+3zgu"_'E_ (28)

One can seefrom (9) that the function v, is negative for any temperature. For the marginal

stability the term 32§uv—' provides the red part of w. For example, it can be estimated for
Vli

carbon at the temperature T =10eV . Using the data from Ref. [7] one can get:

3z =~(2+ 3k (29

li
Under the similar conditions the estimation for v, yields v, = ElO‘ls. This value is able to

exced the value in (29) only for extremely smal wave numbers or extremely high densities.
The sign of the other term determining the red part of w depends on the temperature. For the
example chosen, v, is negative. Radiation ability L,,, of the helium-like ion is sgnificantly
smaller than that of the lithium-like ion L,. The radiation deaeases rapidly with the average
charge incresse. Hence two terms in lradkets of (28) have the opposite signs for the
temperature interval chosen. Thefirst for T =10eV may be estimated as follows:
n2

Pk

One can see that this term can excea (29) for high densties and small k. Under these
conditions the mode becomes aperiodic again. It is useful to remark that the mode (28) may
be significantly more stable than the mode (27) due to the large value of v, .

dz, v, =+10"%

V - Y
“dinT

(30

6. Self-sustained oscillations

As d$own in Ref. [8] the nonlinea self-sustained oscill ations may appea in incompressble
radiative plasmas as a consequence of the phase shift between temperature oscill ations and
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the distribution of impurities over ionizaion states. In the present paper the more redistic
case of the compressble plasmas is considered. The pure cabon plasmas are examined. In
contrast to the Sedion 2, the dedron density is determined by the cabon density:
n,=z,+(z+1Yn,,,. (31
The impurity spedes are described separately. Egs. (7) and (8) are used for the impurity
dynamics description. The processis s1pposed to be slow. Hence, the ion inertia is omitted:
P,+P,,+P, =const =F,. (32
Using the quasi-neutrality condition (31) one canfind n,,, and n, intermsof n,:

n,., = B— (z+1)n, B— n, _Hf z+1)-n )B— (33

One must takeinto account the ionization energy | of the ion with the dharge z adding the
corresponding term to the energy equation (9).

The set of equations may be reduced significantly with the asumption that the perturbations
of relative mncentrations y, =n,/N,, y, =n./N,, dimensionlesstemperature 7 =T /T, and
velocities are small, and the main ronlineaity is conneded with the processes of ionization,
recombination and radiation. Here N, and T, are the unperturbed carbon concentration and
the temperature respedively. Long-wavelength oscillations are examined below, and the
spacederivatives are ignored. After cumbersome but smple transformations one can get the
set of two ordinary differential equations:

. EHZ yz%+% SN yz)-fyi’/\
=N (34)

oYe 2+7-y°
EHZ y2%+% SRVRIER RV P y
——N 3
O e 2+Z yZ ( 5)

Eqs. (34, 35 have been solved numericdly for cabon. The equilibrium values
T,=5€eV, N, =10 cm™ were chosen. The heaing and cooling function is approximated
by the expresson:

Ye(S-Q=a (T -D+a,(y-vy;)+a,(r-D* +a,(y-y))r -D+a,(y-y:)*

with a, =49468, a, =65785, a, =-270, a, =a, =0.

Theresults are shown in Figs. 3 and 4.
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Fig. 3. Therelative concentration oscillations. Fig. 4. The temperature oscillations.
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One can seethat in contrast to the incompresshble plasmas [8], the phase shift between v,

and vy,,, is sgnificantly smaller than 71/2. The oscillation frequency is proportiona to the
total concentration and may be varied significantly, from zero to the upper limit. The latter is
determined by the cndition of the plasma transparency. For instance, if the cabon plasma

hg:;: thle temperature of about 5 €V and the transverse size of 10 cm, the upper limit is about
10°c™.

7. Summary

The influence of the thermal force the heavy ion inertia and the finite relaxation time of the
impurity distribution over ionizaion states on the propagation and stability of the sound
waves, radiative-condensation mode and nonlinea self-sustained oscill ations in radiative
plasmas is examined.

1. It is shown that the thermal force together with the inertia of heavy ions in the impurity
sealed collisonal radiative plasmas causes the alditional damping of the sound waves
excealing the viscous damping significantly.

2. The therma force & well as the finite relaxation time of the impurity distribution over
lonization states is siown to transform the purely aperiodic radiative-condensation mode into
an ocill ating one nea the marginal stabili ty.

3. It was found that the self-sustained, non-linea oscill ations in the wmpressble radiative
plasmas may exist as a consequence of the finite relaxation time of the impurity distribution
over ionizaion states. The frequency is proportional to the plasma density and may be varied
from zero to the upper limit determined by the plasma opticd transparency.
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