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Abstract. Perturbations in multi -component colli sional impurity seeded plasmas are studied. The influences of 
the thermal force, heavy ion inertia and finite time of the impurity relaxation over ionization states are taken into 
account. In the present paper it is shown that the relative species motion and the internal friction caused by the 
heavy ion inertia together with the thermal force increase the sound wave damping significantly. The damping 
mentioned above may exceed the viscous damping, sometimes, by factor ten or more. Hence, the sound waves 
in the multi-component radiative plasmas are significantly more stable than it has been supposed earlier. In the 
present paper it is shown that for the marginal stabilit y the thermal force action on the impurity ions transforms 
the aperiodic character of the radiative-condensation mode into almost periodic one. The similar effect is 
connected with the finite relaxation time of the impurity distribution over ionization states. The ion inertia is not 
important for the radiation-condensation mode. The finite relaxation time of heavy ions over ionization states 
may also produce the nonlinear self-sustained oscill ations.  These oscill ations are examined in compressible 
plasmas.  
 
 1. Introduction 
 
Many phenomena in the edge tokamak plasmas like Multi-faceted Asymmetric Radiation 
From the Edge (MARFE), detached plasma regimes, propagation of the perturbations caused 
by ELMs etc. are associated with the radiative-condensation mode and the sound waves in 
the impurity seeded plasmas (See, for instance, review papers [1-3].) The radiation effects in 
plasmas have been studied for a long time; however, thermal forces and the finite relaxation 
time of the impurity distributions over ionization states have been investigated only in a few 
papers. In particular, the authors of Ref. 4 have found the impurity relaxation time to affect 
significantly the growth rate of the radiative-condensation instabili ty as well as the shock 
wave propagation under the conditions typical for many experiments. As shown in [5] the 
finite relaxation time transforms drastically the spectra of thermal-drift modes. As shown in 
[6] one can find new slow thermal waves taking into account thermal forces. 
finite relaxation time transforms drastically the spectra of thermal-drift modes. As shown in 
[6] one can find new slow thermal waves taking into account thermal forces. 
  The simultaneous influence of the thermal force and the heavy ion inertia as well as 
of the finite relaxation time of the impurity distribution over ionization states, on the 
perturbation propagation and on stabili ty conditions is studied in the present paper. The heavy 
ion inertia is also taken into consideration. First, the thermal force and heavy ion inertia cause 
the relative motion of species, internal friction and consequently additional damping. Despite 
of the small impurity concentration, the effect may be strong for the sound waves because the 
thermal force is proportional to the parameter 2z , and the ion inertia is proportional to the 
heavy ion mass M . (Here z  is the typical impurity ion charge for the equili brium 
temperature.) It is shown in the present paper that the new type of damping may exceed the 
viscous damping by factor 10 or more even if the relative impurity concentration is of only a 
few percent.  Second, the finite relaxation time in many cases may be comparable with the 
mode frequency or even higher. Together with the thermal force, finite relaxation time shifts 
the phases of the temperature oscill ations and radiation respectively. Two effects are the 
consequences of this fact.  
i. The frequency of the radiative-condensation instabili ty acquires a real part.. Hence, the 
radiative-condensation mode is not purely aperiodic, especially for the marginal stabili ty. The 
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effect was predicted in Ref. [6], but the finite relaxation time mentioned above was ignored. 
It is shown in the present paper that sometimes it may exceed the thermal force effect. 
ii. The phase shift between the radiation and the temperature oscill ations increases the order 
of the differential equation describing the process. Hence, one can expect the existence of 
some nonlinear self-sustained oscill ations. The effect has been predicted in Ref. [8] and 
examined for incompressible plasmas. In the present paper the effect is examined for more 
realistic compressible plasmas.  
 
2. Equations 
 
Using the two most representative ion approximation, developed earlier [7], one may reduce 
the full set of equations describing the carbon seeded plasmas to the set of 9 equations:  
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 The impurity distribution over ionization states is represented by two species with the 
electric charge numbersz , and 1+z . Here  

( )11 +++−=Λ zzzze LnLnnS ,                                                                                                   (10) 

S  is the thermal source, zL  and 1+zL  are the radiation functions of the ions with the charges 

z  and 1+z  respectively, j
TR  are the thermal forces. imM , , and em  are the impurity ion 
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mass, the hydrogen ion mass and the electron mass, respectively, ijν  are the colli sional 

frequencies. Other definitions are standard. The ion viscosity η  is taken into account. The 
impurity and electron viscosities are neglected. Also, the equality 

TTTTT zzie ≡=== +1                                                                                     (11) 

is assumed. The plasma is assumed to be optically transparent. 
 The impurity density is assumed to be small. Hence, the impurity contributions to the 
left hand side of the temperature equation (9) are ignored. On the other hand, the impurity ion 
mass is significantly higher than the hydrogen mass, and therefore hydrogen-impurity friction 
may be important even if the impurity concentration is small. 
 It is interesting to note that the equili brium with a non-zero temperature gradient and 
velocities of all species equal to zero is impossible. Equation (1) determines the relation for 
the densities zn  and 1+zn : 
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On the other hand, equations (7) and (8) also determine zn  and 1+zn  as the functions of the 
temperature: 
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Note that, that the set of equations (12-13) together with (9) and (11) is over-determined. 
 Thermal forces z

TR  and 1+z
TR  are expressed in terms of electron and background 

plasma ion temperature gradients (see, for instance, [9]):  
)71.0( 2

iez
z
T TATznR ∇+∇= ,                                                                                   (14) 

where the factor A depends on z , M  and im . If imM >>  one can set 22.2 zA ≈ . Hence, 

taking into account (11):  
TzR z

T ∇≈ 23 .                                                                                                             (15) 
Substituting (15) into (7-8) one can find for 1>>z [10]: 

1+≈ zz vv .                                                                                                                    (16)  
Hence, impurity dynamics may be described with the following equation: 
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The averaged impurity charge is determined by the equation [7]: 
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3. Linear analysis 
 
To the linear approximation, one can look for a solution in the form tiikxe ω− . 
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Under the condition iz nzn <<  the electron density en  is approximately equal to the 

hydrogen ion one, nnn ei ≡≈ . Combination of eqs. (2-4) with (15) yields: 
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Here Inn ~,~  and T
~

 are the perturbed concentrations and temperature respectively, mTc s /2 = , 
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4≈  has been substituted. Also, the approximate 

relation TzRR z
T

z
T ∇><≈≈ + 21 3  is used. 

 Usually, the electrostatic energy does not exceed the thermal one, Te ≤ϕ . Using the 

assumption 13 2 >>z , one can neglect the electric field for the impurity description. Hence, 
equations (5, 6, 17) yield: 
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Here MTc I /2 = . 
 In the linear approximation, eq. (18) yields: 
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Performing the linearization procedure for temperature eq. (9) one has to take into account 
that the function (10) of thermal sources and sinks depends on T , Inn, , and >< z . Taking 
into account (21), 
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 The dispersion relation takes the form: 
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4. Sound waves 
  
In order to investigate the sound branch one must assume 1~ω , β>>1 , and ων >>ij . The 

last condition coincides with the validity condition of hydrodynamics. To the first order, one 

can find from (23): 
)/1(3
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It coincides with usual sound frequency in multi-component plasmas. 
In second order, (23) yields the imaginary part of the frequency: 
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 The last two terms in the right hand of (24) (in brackets) describe the radiation 
influence on the mode stabili ty. The finite relaxation time of the impurity distribution over 
ionization states is taken into account. The effect was discussed briefly in Ref. [4]. The two 
first terms correspond to the colli sional damping. The second term corresponds to the usual 
ion viscosity. The last damping term appears as a sequence of the internal friction between 
the hydrogen ions and the impurity ones. The first part in the internal brackets appears due to 
the large mass ion inertia, and the second corresponds to the thermal force. Despite of the 
inequality ;10 <<zξ the inequalities 13,1/5 0 >>>> ξξ zmM  may be valid. Hence, the 

colli sional sound damping in the impurity seeded plasmas may be significantly higher than in 
the pure hydrogen ones even if the impurity concentration is small. It is possible if  
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Braginsky form for the Coulomb colli sional frequencies is used here. The ratio of the new 
damping rate to the usual viscous one v/s the impurity concentration is shown in Fig.1 for the 

carbon seeded (solid line) and nitrogen seeded (dotted line) plasmas. 5.4,60 0 == zeVT  

have been chosen for carbon, and 5.5,100 0 == zeVT have been chosen for nitrogen. 

               
 
Fig. 1. The ratio of the new sound damping to the viscous one for carbon (red line, T=60 eV) 

and for nitrogen (blue line, T=100 eV) 
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The two ion approximation is valid with a good accuracy for these temperatures.  
 One can see that the stabili ty region for the sound waves is significantly wider than it 
was assumed earlier. 
 
5. Radiation-condensation mode.  
 
The opposite limit, 1<<ω , corresponds to the radiation-condensation mode. The viscosity 
may be omitted. Assuming In ννβω ~~~  etc., 1/ >>Iiνω , 2≈C  and ignoring the third     

term in the right hand of (32) one can get: 
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Here InTek νννχλ ++−= 2 . The limit case ων >>z  was examined in Ref. [6]: 

Ii

I
zdzd z

Td

dz

Td

dz
i

ν
νµννλννλω 2

0

2

00 300
lnln

10 −




 −−±





 −−= .                                     (27) 

 For many practically important conditions the opposite case ων <<z  is more interesting. It 
yields: 
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One can see from (9) that the function Iν  is negative for any temperature. For the marginal 

stabili ty the term 
Ii

Iz
ν
νµ2

03  provides the real part of ω . For example, it can be estimated for 

carbon at the temperature eVT 10≈ . Using the data from Ref.  [7] one can get: 
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Under the similar conditions the estimation for zν  yields 1810−≈
k

n
zν . This value is able to 

exceed the value in (29) only for extremely small wave numbers or extremely high densities. 
The sign of the other term determining the real part of ω  depends on the temperature. For the 
example chosen,  dν  is negative. Radiation ability 1+zL  of the helium-like ion is significantly 

smaller than that of the lithium-like ion zL . The radiation decreases rapidly with the average 
charge increase. Hence, two terms in brackets of (28) have the opposite signs for the 
temperature interval chosen. The first for eVT 10=  may be estimated as follows: 
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One can see that this term can exceed (29) for high densities and small k . Under these 
conditions the mode becomes aperiodic again. It is useful to remark that the mode (28) may 
be significantly more stable than the mode (27) due to the large value of dν . 

 
6. Self-sustained oscillations 
 
As shown in Ref. [8] the nonlinear self-sustained oscill ations may appear in incompressible 
radiative plasmas as a consequence of the phase shift between temperature oscill ations and 
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the distribution of impurities over ionization states. In the present paper the more realistic 
case of the compressible plasmas is considered. The pure carbon plasmas are examined. In 
contrast to the Section 2, the electron density is determined by the carbon density: 
 1)1( +++= zze nzznn .                                                                                                            (31) 

The impurity species are described separately. Eqs. (7) and (8) are used for the impurity 
dynamics description. The process is supposed to be slow. Hence, the ion inertia is omitted: 

01 PconstPPP ezz ==++ + .                                                                                                     (32) 

Using the quasi-neutrality condition (31) one can find 1+zn  and en  in terms of zn : 
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One must take into account the ionization energy I of the ion with the charge z  adding the 
corresponding term to the energy equation (9). 
The set of equations may be reduced significantly with the assumption that the perturbations 
of relative concentrations 00 /,/ NnyNny eezz == , dimensionless temperature 0/TT=τ  and 

velocities are small, and the main nonlinearity is connected with the processes of ionization, 
recombination and radiation. Here 0N  and 0T  are the unperturbed carbon concentration and 

the temperature respectively. Long-wavelength oscill ations are examined below, and the 
space derivatives are ignored. After cumbersome but simple transformations one can get the 
set of two ordinary differential equations: 
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Eqs. (34, 35) have been solved numerically for carbon. The equili brium values 
312

00 10,5 −== cmNeVT  were chosen. The heating and cooling function is approximated 

by the expression: 
20020 )()1)(()1()()1()( zyyzyzye yyayyaayyaaQSy −+−−+−+−+−=− τττ ττττ  

with 8.4946=τa ,  5.6578=ya , 270−=ττa , 0== yyy aa τ .  

 The results are shown in Figs. 3 and 4.  

       
                              t (a.u.)                                                                     t (a.u.) 
 Fig. 3. The relative concentration oscillations.        Fig. 4. The temperature oscillations.                                                                                 
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One can see that in contrast to the incompressible plasmas [8], the phase shift between zy  

and 1+zy  is significantly smaller than 2/π . The oscill ation frequency is proportional to the 
total concentration and may be varied significantly, from zero to the upper limit. The latter is 
determined by the condition of the plasma transparency. For instance, if the carbon plasma 
has the temperature of about 5 eV and the transverse size of 10 cm, the upper limit is about 
105 c-1. 
 
7. Summary 
 
The influence of the thermal force, the heavy ion inertia and the finite relaxation time of the 
impurity distribution over ionization states on the propagation and stabili ty of the sound 
waves, radiative-condensation mode and nonlinear self-sustained oscill ations in radiative 
plasmas is examined. 
1. It is shown that the thermal force together with the inertia of heavy ions in the impurity 
seeded colli sional radiative plasmas causes the additional damping of the sound waves 
exceeding the viscous damping significantly. 
2. The thermal force as well as the finite relaxation time of the impurity distribution over 
ionization states is shown to transform the purely aperiodic radiative-condensation mode into 
an oscill ating one near the marginal stabili ty.  
3. It was found that the self-sustained, non-linear oscill ations in the compressible radiative 
plasmas may exist as a consequence of the finite relaxation time of the impurity distribution 
over ionization states.  The frequency is proportional to the plasma density and may be varied 
from zero to the upper limit determined by the plasma optical transparency. 
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