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Abstract. A series of calculations and measurements have been made to evaluate the effect of
eddy currents in the spherical tokamak ETE (Experimento Tokamak Esférico). Eddy currents
occur in the central column of the conventional copper toroidal field magnet, around which the
ohmic heating solenoid was tightly wound, and in the continuous wall of the vacuum vessel
manufactured from inconel alloy. During the startup phase, the currents circulating in the
central column strongly affect the performance of the ohmic heating system, while the currents
flowing in the vacuum vessel introduce large error fields that must be compensated for successful
plasma breakdown and must also be taken into account in the magnetic reconstruction procedure.
Elaborate analytical models have been developed to represent both systems of currents. The
results of these models are compared with experimental values of the ohmic solenoid impedance,
with the operation of the ohmic heating system, and with the measured distribution of eddy
currents in sections of the vacuum vessel.

1. Eddy currents in the central column of ETE

The central column of the toroidal field (TF) coils in ETE is formed by twelve trapezoidal
cross section copper bars [1]. Figure 1 shows a poloidal cross section of ETE and a sim-
plified cross section of the central column. The time evolution of the currents induced by
the ohmic heating solenoid in each one of the trapezoidal bars is described by a driven
diffusion equation, which can be solved by using a Green’s function and partial eigen-
function expansion with the trapezoidal geometry of the bars approximated by annular
sectors of equivalent area. The total flux associated with the eddy currents induced in
the TF coil central column is

ΦTF (t) =
∞X

m,n=1

Φmn (t) , (1)

where each mode of the induced field evolves according to an equation characterized by
the time constant τmn of the mode and its “mutual inductance coefficient”Mmn with the
solenoid:

dΦmn
dt

+
Φmn (t)

(2− k) τmn = −
Mmn

2− k
diΩ
dt
. (2)

The coupling coefficient between bars is k = (N2 −N + 1) /N2, where N = 12 is the
number of trapezoidal bars stacked in the central column, and iΩ is the current in the
ohmic heating system. The voltage in the ohmic heating solenoid in series with the pair
of internal compensation coils (see Fig. 5) is

vΩ (t) = RΩiΩ (t) + LΩ
diΩ
dt
+
NΩ`eff
hΩ

dΦTF
dt

, (3)

where RΩ, LΩ, NΩ and hΩ are the resistance, inductance, number of turns and length
of the ohmic heating solenoid, respectively. The effective length `eff takes into account
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the additional turns introduced by the internal compensation coils. Finally, the solenoid
impedance is given by

ZΩ (ω) =
vΩ (ω)

iΩ (ω)
= RΩ + iωLΩ − iωNΩ`eff

(2− k)hΩ
∞X

m,n=1

iωMmn

iω + 1/ [(2− k) τmn] . (4)

An “exact” representation of the solenoid impedance was generated including 48 modes
in the calculation (m = 4 and n = 12 correspond to the maximum azimuthal and radial
wave numbers, respectively). Based on this representation, it has been found that an
equivalent four modes approximation is sufficient to describe the effect of eddy currents
for time intervals longer than about 10 µs. In the high frequency range the cooling holes
in the TF coil bars introduce a small correction that can be easily inserted in Eq. 4.
Furthermore, it is necessary to take into account the proximity effect in the solenoid,
which gives an appreciable contribution in the intermediate frequency range of the ohmic
heating system operation. Figure 2 shows a Bode plot of the ohmic solenoid impedance.
The lines correspond to the theoretical results and the points to experimental values. The
continuous lines correspond to the calculation over the entire frequency range, including
the cooling holes and proximity effect contributions. The long dashed lines correspond to
the low frequency approximation and the short dashed lines to the high frequency, skin
effect approximation of the solenoid impedance in the presence of eddy currents in the
central column. The experimental error is typically 5%, but may be larger in the low and
high frequency ranges.

2. Eddy currents in the vacuum vessel of ETE

The distribution of eddy currents in the vacuum vessel is modeled using a thin shell ap-
proximation, curvilinear coordinates and the following spectral representation in Cheby-
shev polynomials for the contour of the vessel:

R (θ) = C0 + C1 cos θ − aPnmax
n=1 Cn [1− Tn (cos θ)] ,

Z (θ) = EV sin θ [C1 − aPnmax
n=1 CnUn−1 (cos θ)] .

(5)

The coefficients C0 and C1 are determined by the geometric constraints R (0) = R0 + a
and R (π) = R0− a, where R0 and a are the major and minor radii of the toroidal vessel,
respectively. The elongation EV and the remaining coefficients Cn are determined by a
least-squares fitting procedure. Using again a Green’s function approach, the equation
governing the induction of the surface current KT on the thin shell is [2]

2πhζ
σδ

KT (
−→r ) = −µ0

I ∂KT (
−→r 0)

∂t
G (−→r ,−→r 0) d` (θ0)− ∂Φext (

−→r )
∂t

, (6)

where σ is the conductivity of inconel, δ is the (sectionally variable) thickness of the
vacuum vessel wall, and the scale factor with respect to the toroidal angle ζ is hζ =
|∂−→r /∂ζ| = R (θ). The Green’s function for the axisymmetric Ampère’s law is

G (−→r ,−→r 0) = 1

2π

Z πhζhζ0 cos (ζ − ζ 0)
|−→r −−→r 0| dζ 0, (7)

and Φext is the flux of the external sources. The equation for KT has local terms depend-
ing on the shell resistivity and non-local terms depending on mutual inductance effects
between diverse regions of the surface current distribution. It can be solved using a
truncated Fourier series expansion for the surface current given by

KT (θ, t) =
1

2πhθ (θ)

Ã
IT (t) +

X̀
n=1

In (t) cosnθ

!
, (8)
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where hθ = |∂−→r /∂θ|. The total toroidal current flowing in the vacuum vessel is IT . This
current and the coefficients In satisfy a set of `+ 1 equations of the form (m = 0, 1 . . . `)

R0mIT (t) + L0m
∂IT
∂t

+
X̀
n=1

Ã
RnmIn (t) + Lnm

∂In
∂t

!
= −X

k

Lkm
∂Ik
∂t
, (9)

where Rnm and Lnm are resistance and mutual inductance coefficients defined by:

Rnm =
1

2πσδ

Z hζ (θ)

hθ (θ)
cosnθ cosmθ dθ,

Lnm =
µ0
4π2

Z µZ
G (θ, θ0) cosnθ0 dθ0

¶
cosmθ dθ,

(10)

and Lkm = µ0 (2π)
−1 R [Gk (θ) +Gk (−θ)] cosmθ dθ are the mutual inductance coefficients

between the induced current distribution and the k pairs of external coils, which are placed
symmetrically with respect to the equatorial plane and connected in series. Satisfactory
results are obtained including the fundamental mode and only three harmonics (` = 3) in
the calculations. The evolution with time of the eddy currents in the vessel is obtained
taking into account all the coupling effects between the vessel, external coils, and eddy
currents in the central column. The currents in the capacitor banks and external coils
are calculated self-consistently with the eddy currents. Figure 3 shows the calculated
(continuous line) and experimental values (points) of the currents in the ohmic heating
solenoid and vacuum vessel for a typical test shot.
Figure 4 shows the distribution of eddy currents in sections of the vacuum vessel. The
measurements (points) were taken by the insertion of a long Rogowski coil through the
access ports of the vessel, as indicated in Fig. 5, plus using the Rogowski coil permanently
installed outside the vacuum vessel. These measurements are subject to large errors due to
stray fields and misalignment. Nevertheless, there is good agreement with the calculated
distribution, particularly of the times of current inversion. In the outer, weakly coupled
region (outer section 1 through flanges 0 and 1 - thick wall) the vessel response is similar
to a current transformer, while the response of the inner, strongly coupled region (inner
section 6 between upper and lower flanges 5 - thin wall) is similar to a voltage transformer.
The calculated current distributions will be used in future work both to model the eddy
current effects in zero-dimensional simulations of the plasma discharge in the early phase,
and to eliminate error-fields in the magnetic reconstruction of the plasma equilibrium.
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Figure 1: Simplified cross sections of ETE and of the toroidal field coil central column.

Figure 2: Amplitude and phase of the ohmic solenoid impedance.

Figure 3: Current in the ohmic heating system and total eddy current in the vacuum vessel.
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Figure 4: Distribution of eddy currents in sections of the ETE vacuum vessel.

Figure 5: Sections of the vacuum vessel used for measuring the eddy current distribution.


