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Abstract. Bursting Alfvénic activity accompanied by strong thermal crashes and frequency chirping
in a W7-AS shot is studied. A theory explaining the experimental observations is developed. A novel
mechanism of anomalous electron thermal conductivity is found. In addition, a general consideration of
the influence of the gap crossing on the Alfvén continuum in stellarators is carried out and a phenomenon
of gap annihilation is predicted.

1. Introduction

Fast-ion-driven Alfvén instabilities are frequently observed in W7-AS [1] since neutral
beam heating with PNBI . 3.5 MW is used. In the majority of the cases, Alfvén modes
affecting the energy and the fast particle confinement occur transiently during the build-
up of optimized discharges. The relative fraction of fast particles is small at high densities
and relatively low temperatures, in particular, during high-β operation, which explains
why Alfvén instabilities are usually stabilized close to these operational boundaries. On
the other hand, we should note that the fast ion population grows with temperature (it

is proportional to T
3/2
e ) and with increasing injection power; therefore, one can expect

that fast-ion-driven instabilities will arise in future machines even in regimes with high
β. The frequencies of the observed instabilities vary in a wide range from few tens of
kHz to hundreds of kHz. A most interesting feature of these instabilities is that they
can result in thermal crashes (the temperature can drop by up to 30%, see, e.g., Fig. 1).
Note that this effect has never been observed in tokamaks (where Alfvén instabilities may
influence the confinement of fast ions but not of the bulk plasma; only weak local thermal
crashes during bursts of TAE (Toroidicity-induced Alfvén Eigenmodes) were observed in
D-IIID [2]). In this work we analyse a low-frequency Alfvén instability observed in a
particular shot of W7-AS and suggest an interpretation of this observation: we identify
the instability, calculate its growth rate, suggest an explanation of the observed strong
frequency chirping, and analyse the mechanisms that can result in thermal crashes. In
addition, we present new features of the Alfvén continuum in stellarators.

2. An NBI-driven Alfvén instability accompanied by thermal crashes in the
W7-AS shot #34723

2.1. Identification of the instability. Mechanism of the frequency chirping

The instability in the W7-AS shot #34723 (see Fig. 1) had a bursting character and
was characterized by strong frequency chirping down, from about 70 kHz to 45 kHz,
the instability being strongest at the final stage of the bursts, when thermal crashes
occurred. The duration of the instability bursts was about 2.5 ms, the repetition period
of the bursts was 8–10 ms. The plasma energy grew with time in average. Eventually, the
bursts stopped, and only relatively weak steady-state Alfvénic activity with the frequency
equal to that at the beginning of the bursts remained, without visible influence on plasma



FIG. 1. Bursts of Alfvén instabilities in the
W7-AS shot #34723.
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FIG. 2. Scalar potential of an Alfvén eigen-
mode calculated with the code BOA for the
W7-AS shot #34723.

at this stage. The dominant poloidal mode numbers during the instability were m1 = 3
and m2 = 5.

Although the mentioned harmonics are coupled through the ellipticity coupling number,
µ = m2 − m1 = 2, the Ellipticity-induced Alfvén Eigenmode (EAE) instability was
dismissed as explanation since the cylindrical branches of the Alfvén continuum (AC)
with m1 = 3 and m2 = 5 intersect at ι = 0.5, whereas ι(r) was predited less than
0.5 from equilibrium calculations. An eigenmode analysis carried out with the code BOA
revealed eigenmodes with a toroidal mode number n = 2 (an eigenmode with the frequency
near the AC branch m/n = 5/2 is shown in Fig. 2), the eigenmode frequencies being
close to maxima/minima of the corresponding continuum branches. These branches, as
well as the whole AC in the region below 120 kHz, were calculated with the AC code
COBRA [3], see Fig. 3. Both Fig. 2 and Fig. 3 are obtained for a plasma with a slightly
non-monotonic rotational transform [a profile with ι(0) = 0.447, ιmax = 0.45 at r = 0.25a
and ι(a) = 0.405, where a is the minor plasma radius, was used in Fig. 2; a similar profile
but with ιmax = 0.46, in Fig. 3]. It was taken into account that the plasma consisted
of the mixture of deuterium and hydrogen: in the considered shot, protons with the
maximum energy of 48 keV were injected tangentially (the injection was balanced) into
a deuterium plasma. The estimated fraction of hydrogen at t = 0.29 s, immediately after
a burst of the instability, is 20% in average and 60% in the plasma centre if the radial
distribution of thermalized protons were as peaked as the beam ion distribution. This
implies that the error bar in the Alfvén frequency in Figs. 2 and 3 is 15%. Note that the
toroidal mode numbers are not known from the experiment. Therefore, we considered
various magnitudes of n. We concluded that the mode with n = 1, which, on the first
sight, is a good candidate because it has the frequency in the range of interest, was not
observed. The basis for this conclusion was that the m/n = 1/1 AC branch lies much
closer to the m/n = 3/1 branch than the m/n = 5/1 branch; thus, a satellite with m = 1
rather than with m = 5 should be present in the Fourier spectrum if n = 1; however, the
m = 1 harmonic was not detected in the experiment. It follows from our analysis that
the observed mode is not a gap mode; therefore, it can be identified as an unusual Global
Alfvén Eigenmode (GAE) with the frequency lying above the Alfvén continuum.
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FIG. 3. The Alfvén continuum calculated
by the code COBRA for the W7-AS shot
#34723. Black vertical lines, AC at several
radii; thick curves, selected AC branches;
thin curves, boundaries of main gaps.
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FIG. 4. The resonance velocity, w ≡ v‖/v0,
vs ω for various ιmax in the W7-AS shot
# 34723. The red curves show resonance
velocities for the mode localized at ιmax and
40 kHz < ω = 0.82|k‖(ιmax)|vA < 60 kHz.

The Alfvén instabilities can be driven by fast ions when the following resonance condition
is satisfied [4]:

ω = [mι− n± (µrι− νrN)]v‖/R, (1)

where N is the number of the equilibrium magnetic field periods along the major azimuth
of the torus, R is the major radius of the torus, µr and νr are the resonance coupling
numbers determined by Fourier harmonics of the field line curvature [5]. In the considered
shot the resonance with µr = 1, νr = 0 can lead to the strongest instability because, first,
it involves beam ions with the energy close to the injection energy, E0 = 48 keV (see
Fig. 4), and second, the toroidicity-induced Fourier harmonic of the magnetic field (and,
thus, the curvature) belongs to the dominant harmonics. Another resonance involving
the particles with energy E . E0 is the µr = 0, νr = 0 resonance (the “basic resonance”).
However, the corresponding curvature harmonic is considerably smaller than the toroidal
harmonic. Therefore, it can only lead to a relatively weak instability. Growth rates were
calculated with the code GAMMA. We found that with the sideband resonance with
µr = 1, νr = 0 being present, the instability is really very strong, γ . ω, so that the
perturbative approach used here is marginally applicable. This is the case when ω is less
than a certain magnitude about 50 kHz. For higher ω the instability is much weaker.

On the other hand, the mode frequency strongly depends on ιmax ≡ max ι(r). Therefore,
a small change of ι considerably changes the mode frequency. In order to see this, we
assume that vA(r) ≈ const in the region of the instability (the plasma density profile is
very flat) and that the maximum of the rotational transform evolves from ι1 to ι2. Then,
approximating the mode frequency as ω ≈ Ck‖(ιmax)vA with C = const, we obtain the
corresponding change of the mode frequency:

ω2 − ω1

ω1

=
ι2 − ι1

ι1 − n/m
= −1

3
(2)

for m/n = 5/2, ι1 ≡ ιmax(t1) = 0.49, and ι2 ≡ ιmax(t2) = 0.46. Equation (2) is in
reasonable agreement (slightly overestimates) with the frequency change obtained from
AC calculations with COBRA.
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FIG. 5. Possible evolution of the rotational
transform during a burst of Alfvén instabil-
ity.
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The above considerations suggest the following explanation for the observed frequency
chirping. The µr = 1 resonance was responsible for the final stage of the instability,
whereas other resonances [in particular, the basic resonance (µr = 0, νr = 0)] were
responsible for the initial stage. This would be the case if the instability could influence the
rotational transform, reducing its maximum magnitude, as inferred from Fig. 4. A possible
mechanism leading to a change in the rotational transform is a redistribution of the beam
ions with a certain sign of v‖ by the instability. A simple estimate shows that such a
redistribution can locally change the plasma current by about δj = 10(1 − z−1

eff ) A/cm2,
where zeff & 2 is the effective charge number. This is enough for the required local change
of iota. For instance, δι = 2πRδj/(Bc) = 0.04 when δj = 3.8 A/cm2. Moreover, the
characteristic time of the evolution of the current density [and ι(r)] is about τι ∼ 1 ms,
see Fig. 5, which was obtained by solving the following model equation:

∂ι

∂t
=

1

r

∂

∂r

Dι

r

∂

∂r
r2(ι− ι∞), (3)

where Dι = c2/(4πσ‖), σ‖ is the electrical conductivity along the magnetic field, ι∞ =
ι∞(r) is the rotational transform in the infinite time after the burst. The obtained magni-
tude of τι is a factor of two less than the duration of the instability burst. This is sufficient
for ι to change during the burst.

Note that the sideband resonance involves particles with another sign of v‖ than that
for the basic resonance (see Fig. 4). This may explain why the frequency chirping down
stopped after the mode frequency reached the minimum value of about 45 kHz and even
a slight increase of ω was observed at the end of the instability burst.

2.2. Mechanisms of thermal crashes

2.2.1. Cooling of the plasma core due to ejection of fast ions

A simple mechanism that could be responsible for the thermal crashes during the bursts
of Alfvén instabilities is the following. If a burst results in a loss of fast ions, the plasma
heating decreases rapidly. This leads to a decrease of the plasma temperature, which
may be significant if the energy confinement time, τE, is considerably less than the time
between two subsequent bursts.



To study this scenario, we make some simplifying assumptions. We assume that all the
injected ions have the same energy, E0, and pitch angle χ ≡ v‖/v. In addition, we assume
that there is only one resonance with given µr, νr [see Eq. (1)] and that some fraction, νL,
of the particles reaching the resonance magnitude of velocity, vr, due to slowing down is
promptly lost. Then, taking into account that E(t) exp(t/τE) = const, with τE the particle
energy loss time, during slowing down, we can write the following equation describing the
temporal evolution of the beam ion energy density, Wb:

Wb(t) = Wb0





1− νLEr

E0

[
1− exp

(
− t

τE

)]
for 0 ≤ t ≤ τburst

1− νLEr

E0

[
1− exp

(
− τburst

τE

)]
exp

(
− t−τburst

τE

)
for t ≥ τburst

(4)

where Wb0 is the beam energy density in the quiescent state, τburst is the burst duration.
In order to describe the influence of the variation of Wb on the plasma temperature,
Eq. (4) should be solved together with an equation for the plasma energy. The latter can
be written as follows:

dT

dt
=

Wb

3neτE
− T

τE

, (5)

where τE is the plasma energy confinement time, ne is the electron density.

Equations (4) and (5) were solved for τE = 5 ms, τE = 3 ms, τburst = 2 ms, which corre-
sponds to the W7-AS shot #34723, and νLEr/E0 = 0.9. We obtained the temperature
oscillations with the amplitude about 11%, which is less than what was observed exper-
imentally. On the other hand, if we assumed that more resonances lead to particle loss,
we would obtain a larger amplitude. However, the used magnitude of νLEr/E0 seems to
be unrealistically large because it implies that, at least, 90% of the resonant particles
are immediately lost from the plasma. Therefore, the considered mechanism is hardly
responsible for the observed thermal crashes, although it can considerably contribute to
the changes of the temperature, especially, when τE is reduced because of the formation
of magnetic islands, as described below.

2.2.2. Enhancement of electron thermal conductivity by Alfvén waves

An Alfvén mode in a stellarator includes numerous Fourier harmonics (although only sev-
eral of them are significant). For some harmonics, k‖(r) vanishes at certain radii, around
which magnetic islands may be formed. When the electrons are fast enough, so that the
magnetic islands almost coincide with the islands associated with the resonances of the
electron motion, ω = k‖v‖, the electron transport may be enhanced by the destruction
of the magnetic flux surfaces. However, because of the low plasma temperature in the
considered experiment (T (0) = 290 eV), only superthermal electrons “feel” the magnetic
islands. Furthermore, the plasma density was high (n ∼ 1014 cm−3), so that the frequency
of the electron–ion collisions was large, νei ≈ zeff × 106 s−1. We find that ωt

isl ¿ νei ¿ ωu
isl,

where ωt
isl ∼ mv‖δι/R and ωu

isl ∼ mv‖ι/R are the characteristic frequencies of the particles
trapped in the island and the untrapped particles, respectively, δι is the variation of ι
within the island. For ι = 0.45, δι = 0.01, and m = 5, we obtain ωt

isl = 2.5× 105 s−1 and
ωu

isl = 107 s−1. This suggests that the anomalous thermal conductivity of electrons results
from the joint action of the waves and the Coulomb collisions. By similarity with the
neoclassical theory, we can introduce the “anomalous collisional”, “anomalous plateau”,
and “anomalous banana” regimes. In the experiment, the electrons are in the anomalous
plateau regime, close to the boundary with the collisional one. Below we evaluate the
thermal conductivity for the collisional regime, somewhat underestimating the effect of
the waves.



Integrating the equation of the particle motion, ṙ = v‖B̃r/B + cẼθ/B, we obtain

ξr =
imc

Brk‖(ω − k‖v‖)
Ẽ‖ − iB̃r

k‖B
, (6)

where ξr is the radial particle displacement, B̃ and Ẽ are the perturbed magnetic and elec-
tric fields, respectively. The first term in Eq. (6) depends on the velocity of the individual
particle, whereas the second one describes the oscillations of the particles together with
the plasma. Therefore, only the first term describes the deflection of the particles from
the perturbed flux surfaces. Using this term, we can estimate the characteristic radial dis-
placement of a particle during its random walk, ∆. We define ∆ via ∆2 =

∫
dv‖fM(v‖)|ξr|2,

where ξr is determined by Eq. (6) with the last two terms omitted, the integral is taken

over the region of untrapped particles (i.e., |v‖ − ω/k‖| > 2[ωBecẼ‖/(k‖B)]1/2), fM is the

Maxwellian distribution, ωBe = eB/(Mec). As a result, we find ∆(Ẽ‖). Then we express

Ẽ‖ in terms of B̃r, using the equations Ẽ‖ = 4πi j̃‖/(ωε‖) and j̃ = (c/4π)∇ × B̃, where

ε‖ = ω2
pe/(k

2
‖v

2
e) is the plasma dielectric permeability along the magnetic field, j̃ is the

perturbed current, ωpe is the plasma frequency, ve = (Te/Me)
1/2, Me is the electron mass.

We obtain the coefficient of heat conductivity of the electrons as follows:

χe = ∆2νe =
νe

(2π1/2)

(
m

rk‖

)1/2

k3
⊥ρ3

i

v3
A

veω3/2ω
1/2
Be

(
B̃r

B

)3/2

, (7)

where ρi = vi/ωBi, vi = (Ti/Mi)
1/2, ωBi is the ion gyrofrequency, νe = νei + νee.

It is clear that the plasma confinement can be essentially affected by the anomalous
transport only when the wave exists in a considerable part of the plasma cross section.
This is not the case for the mode considered above (Fig. 2), which is localized at the
plasma centre. Nevertheless, below we show that it affects a considerable part of plasma
by generating a kinetic Alfvén wave (KAW). Such a wave, in addition, generates significant

Ẽ‖ due to a small radial wave length.

The KAW is generated because the frequency of the considered GAE lies above the cor-
responding AC branch, ωA(r) (in contrast to the conventional GAE). Our analysis shows
that in this case a kinetic Alfvén wave (KAW) is generated due to “tunnel” interaction
with the continuum, as in the case of TAE [6]. The amplitude of the radiated KAW
depends on the distance of the mode frequency from the continuum and in our case can
be comparable to the GAE amplitude. The absorption length of KAW is

labs = 2

√
2

π

ve

vA

ω

ωA

(
1

k2
⊥ρ2

i

− 3

4

)
k−1

r , (8)

where

k2
⊥ρ2

i =
ω2 − ω2

A(r)

ω2
A(r) + 3

4
ω2

. (9)

One can show from Eq. (9) that k⊥ ≈ 0 at the point where the KAW is generated, and
k2
⊥maxρ

2
i ≈ 0.3. This leads to labs ∼ 10 cm. Due to this, the destabilization of the ideal

GAE localized in the central region affects a considerable part of the plasma. Analysis
of the dispersion relation of KAW shows that the coupling of Fourier harmonic of the
wave results in transformations of KAW branches near rational-ι points where k‖ of the
branches coincide, in our case, from a m/n = 5/2 into a m/n = 4/2 branch at r/a ∼ 0.5;



the latter propagates to the point r/a ∼ 0.7, where ω = ωA (see Fig. 3). At this point
the wave is reflected because the KAW is evanescent when its frequency is below the
corresponding AC branch. Thus, we conclude that the instability affects about two thirds
of the plasma radius, which roughly coincides with the experimentally observed inversion
radius of the thermal crashes.

Let us evaluate the amplitude of the wave required to account for the observed thermal
crashes. Taking τE = a2/(µ2

0χe) = 1 ms (where µ0 = 2.4), k2
⊥ρ2

i = 1/3, k‖ = 10−3 cm−1, we

obtain from Eq. (7) that B̃r/B = 4×10−4. This estimate is relevant to KAW, for which B̃θ

is few times larger than B̃r. On the other hand, Eq. (7), which was used to evaluate B̃r,
underestimates the anomalous thermal conductivity because the plateau regime rather
than the collisional regime takes place in the experiment. Therefore, we can expect that

B̃/B required to provide τE ∼ 1 ms will be about the above estimate for B̃r/B. This

magnitude of B̃/B is quite reasonable from the point of view of available experimental

data: the Mirnov-measured amplitude of B̃θ/B outside the plasma was as large as 10−4,
whereas soft X-ray measurements indicated that the instability was localized in the core,
which implies that its amplitude inside the plasma well exceeded the level of 10−4.

Enhancing the electron heat conductivity, the considered mechanism has almost no in-
fluence on the ion transport (on both diffusion and heat conductivity) because the ions
weakly deflect from the perturbed flux surfaces, as follows from Eq. (6) (for the ions
ω À k‖vi). On the other hand, although the electron diffusion is enhanced, the electron
confinement time was weakly affected in the considered W7-AS shot because of the very
flat electron density profile.

3. Annihilation of gaps in the Alfvén continuum of stellarators

Calculations of the AC in W7-AS with COBRA show that the high-frequency part of
AC consists of extremely thin walls (with the relative width ∆ω/ω ∼ 10−3 and less)
squeezed by wide gaps. Such compression of the continua (which is observed in other
devices as well, e.g, in LHD [5]) completely changes the shape of AC branches, which is of
importance for the properties of Alfvén eigenmodes. The wave functions of the compressed
continua are characterized by strong ballooning. To elucidate the properties of such
continua, we consider a model configuration with only two coupling Fourier harmonics,
exp(iµ1θ−iν1Nφ) and exp(iµ2θ−iν2Nφ), and study the behaviour of AC near the crossing
point of the two concomitant gaps.

We show that the vicinity of the crossing point is characterized by the presence of long
chains of strongly coupled Fourier harmonics of the wave, coupling between different chains
being much weaker. Restricting the calculations to one chain (“the chain model”), one
can take into account very far interactions between the harmonics. Analytical study of
the chain model reveals that the gaps “annihilate” at the crossing: The width of the joint
gap equals the difference of the widths of the two separate gaps. Numerical calculations
(Fig. 6) confirm this prediction and show the appearance of multiple “combination” gaps
(i.e., gaps that result from the joint action of the two harmonics). The gaps are separated
by narrow continuum threads, the width of each thread decreasing exponentially with
|ι − ιX |−1, where X refers to the crossing point. The obtained pattern is confirmed by
calculations of AC in the stellarator NCSX [7], in which the chain model was not used.

Employing the WKB approach, we suggest an analytical treatment of the problem. The
problem is reduced to the Schrödinger equation with a periodic potential (like in solid
state physics). The continua near the main gap correspond to the bound states trapped



in the potential wells. This trapping explains the wave function ballooning observed in
the W7-AS continuum. The spectral width of the states (i.e., the width of the continuum
walls) is determined by tunnelling between the wells and exponentially decreases with
|ι− ιX |−1, as observed in numerical calculations.

4. Summary and Conclusions

(I) An interpretation of experimental observations of Alfvénic activity in the W7-AS shot
#34723 is suggested, and a relevant theory is developed.

The observed instability is identified as an unconventional GAE mode (with the frequency
above AC) accompanied by the generation of kinetic waves (KAW). The calculated GAE
eigenmodes are localized at the plasma centre with the dominant mode numbers m1 = 5,
m2 = 3 (satellite harmonic) and n = 2. An interesting feature of KAW is that the mode
with m/n = 5/2 is transformed into the mode with m/n = 4/2 at r/a ∼ 0.5. The
generation of the KAW extends the region affected by the instability up to r ∼ 0.7a,
where the radially propagating 4/2 KAW is reflected.

The performed analysis of the resonances between the waves and beam ions predicts
enhancement of the instability during the frequency chirping down, which agrees with
the appearance of the thermal crashes at the final stage of the instability bursts. It is
shown that the frequency chirping may be caused by small local changes of the rotational
transform due to the redistribution of the beam ions.

It is revealed that the presence of Alfvén waves, especially KAW, can strongly enhance
the electron thermal conductivity. The considered mechanism is simple and robust: it
is based on the fact that the collisional energy transfer can be strongly increased by a
wave of a finite amplitude because the waves increase the excursions of the particles from
the magnetic flux surfaces. The mechanism explains the oscillations of the plasma energy
content without noticeable density variations in the W7-AS shot #34723.

(II) A general consideration of the behaviour of Alfvén continuum near a point where two
gaps cross is carried out. The phenomenon of gap annihilation at the crossing point is
predicted. An analytical description of compressed continua is suggested.
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