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Abstract. Recent progress in the theory of the Newcomb equation is reported. Emphasis is

put on the analysis of external modes including peeling modes (high n kink modes), where n

is the toroidal mode number. A theory for low n external modes is developed so that it is also

useful for the analysis of resistive wall modes.

1. Introduction

It is well known that the Newcomb equation, the inertia free linear ideal magnetohy-
drodynamic (MHD) equation[1], plays fundamental roles in the MHD stability theory.
A code MARG2D has been developed which solves numerically the 2-dimensional (2-D)
Newcomb equation and the associated eigenvalue problem[2]. In this paper, recent re-
search on the 2-D Newcomb equation is reported. The main focus is to develop tools for
the analysis of low n and high n external modes, where n is the toroidal mode number.
The high n kink modes, called peeling modes[3], recently get attention in the study on
MHD stability of tokamak edge plasmas[4]. For the low n external modes, we develop a
theory that expresses the change of potential energy due to the plasma displacement by a
quadratic form with respect to the values of the displacement at the plasma surface. This
formulation is useful for the analysis of resistive wall modes. For the analysis of peeling
modes we extend the MARG2D formulation into the vacuum region by expressing the
perturbation of magnetic fields in vacuum by a suitable vector potential.

2. Newcomb equation

In an axisymmetric toroidal system such as a tokamak, equilibrium magnetic fields are
expressed as

Beq = ∇φ×∇ψ + F∇φ, (1)

where the cylindrical coordinate system (R,Z, φ) is employed; ψ(R,Z) and F (ψ) are,
respectively, the poloidal flux function and toroidal field function. We define the radial
coordinate by

r2 := 2R0

∫ ψ

0

q

F
dψ. (2)

Here, R0 is the position of the magnetic axis (for simplicity, the mirror symmetry of the
equilibrium is assumed: ψ(R,−Z) = ψ(R,Z)); q(r) is the safety factor, as usual. We
define the poloidal angle θ so that the magnetic field lines are straight; the Jacobian
of the coordinate system (r, θ, φ) is

√
g = rR2/R0. Let ~ζ be an infinitesimal plasma
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displacement with the toroidal mode number n that is incompressible (∇ · ~ζ = 0 ), and
let

X(r, θ) := ~ζ · ∇r, V (r, θ) := r(~ζ · ∇θ − 1

q
~ζ · ∇φ), (3)

then the change of the plasma potential energy Wp due to the displacement ~ζ reads[5]

Wp = π

∫

Ldrdθ, (4)

and the Lagrangian density function L reads

L = a|Dθ(X)|2 + c|∂r(rX) + ∂θV |2 + e|X |2

+ b|inV +
1

q
∂r(rX) + hX + rβrθDθ(X)|2. (5)

Here, the operator Dθ(X) is defined by

Dθ(X) :=
1

q
∂θX − inX, (6)

and the other coefficients are given in Ref.[2].
By minimizing Wp with respect to V (r, θ), we obtain the reduced energy integral

Wp[X,X] = 2π2

∫ a

0

L[X,X]dr. (7)

Here, the vector function X(r) is defined as

X(r) := {X−Lf
(r), · · · , XLf

(r)}t, (8)

by using the poloidal Fourier harmonics Xl(r)

X(r, θ) =

Lf
∑

l=−Lf

Xl(r) exp(ilθ), (9)

where Lf is the truncated poloidal mode number. And the reduced Lagrangian density is

L[X,X] = 〈dX
dr

|L|dX
dr

〉 + 〈X|K|X〉 + 〈dX
dr

|M t|X〉 + 〈X|M |dX
dr

〉, (10)

where L,M ,K are matrices; L and K are hermitian, the details of which are given in
Ref[2], and

〈X|K|X〉 :=
∑

j,k

XjKjkXk.

From L[X,X], we have the 2-D Newcomb equation

NX := − d

dr

(

L
dX

dr

)

− d

dr
(M tX) + M

dX

dr
+ KX = 0. (11)

The eigenvalue problem associated with Eq.(11) is given by

NX = −λRX, (12)

where R is a multiplicative and diagonal operator whose components are Rm,m ∝ (m/q−
n)2. The natural boundary condition for Xm is imposed at the rational surface of rm (m =
nq(rm)); the continuous conditions are imposed for other harmonics Xl (l 6= m). A
code MARG2D which solves Eqs.(11, 12) has been developed by using a finite element
method. The code has been applied to identify stable states for ideal MHD internal
perturbations[2].
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3. Application to the theory of low n external modes

The bilinear form associated with Eq.(7) is given by

W [~ξ, ~η] = Wp[~ξ, ~η] + 〈~ξa|MV |~ηa〉, (13)

where ~ξa = ~ξ(a) and the matrix MV stands for the contribution from the vacuum region.

Let S = {~ξ | N ~ξ = 0} be a set of functions that satisfy the Newcomb equation. If
~ξ(r), ~η(r) ∈ S, then we have

Wp[~ξ, ~η] = 〈~ξa|MH |~ηa〉 +
1

2

〈

~ξa|L|d~ηa
dr

〉

+
1

2

〈

d~ξa
dr

|L|~ηa
〉

, (14)

MH :=
1

2
(M + M

t). (15)

Now let us make a vector function ~Y m(r) ∈ S

~Y m(r) = (Y m
−Lf

(r), · · · , Y m
Lf

(r))t, (16)

for m = 0,±1, · · · ,±Lf , where each poloidal harmonics Y m
l (r) satisfies the condition

Y m
l (a) = 0 (l 6= m), Y m

m (a) = 1, l = 0,±1, · · · ,±Lf . (17)

The set {~Y m(r)} forms a basis[6]. An external mode can be expressed by using an
arbitrary set {xm} of real numbers as

~ξ(r) =
∑

m

xm~Y
m(r). (18)

The change of the potential energy due to ~ξ is given by the vector ~x as

W [~ξ, ~ξ] = 〈~x|A|~x〉, (19)

where the matrix A, which is real and symmetric, is given by

A = M p + MV , Mp(l,m) = Wp[~Y
l, ~Y m]. (20)

We call A the stability matrix for external modes. If the minimum eigenvalue of A is
negative, then the plasma is unstable against ideal external kink modes. The matrix A

also plays an important role in the stability of resistive wall modes[6].

The basis {~Y m(r)} can be constructed by using the response formalism[7]. Let us write
~Y m(r) as

~Y m(r) = ~Xm(r) + ~Zm(r), (21)

where ~Zm(r) given analytically satisfies the inhomogenous boundary condition, Eq.(17).

Then, we have an inhomogeneous equation for ~Xm(r) with the homogenous boundary
condition

N ~Xm(r) = −N ~Zm(r), ~Xm(a) = 0. (22)
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FIG. 1. (a) Profiles of the pressure p and the safety factor q of RS and the q profile of NS.

The βp of these equilibria are 0.80. The values of qmin and qa in RS are same as those in NS

(qmin = 1.30, qa = 2.80). (b) Profile of the parallel current density j‖ of RS and that of NS.

These profile near the plasma surface are similar to each other.

Since Eq.(22) can be solved by the MARG2D code, we can construct the basis {~Y m(r)}
and the stability matrix A.
The present formalism enables us to get deeper insight into the stability properties of
external modes when it is combined with the eigenvalue problem associated with the
original Newcomb equation[8]. It clarifies that the stable internal modes can destabilize
the external modes and change the surface mode structure of external modes into a global
mode structure. The difference in the stability properties between the normal shear
tokamak (NS) and a reversed shear tokamak (RS), as shown in Fig.1, can be analyzed
from such a viewpoint. Fig.2 shows the qa dependence of µ0, the minimun eigenvalue of
the matrix A, and λ0−int, the minimum eigenvalue of the eigenvalue problem associated
with the Newcomb equation with the fixed boundary condition. The black solid line and
the black dashed line show µ0 and λ0−int in RS, and the gray solid line and the gray
dashed line are for µ0 and λ0−int in NS. In the region 4.50 < qa, µ0’s for RS and NS are
nearly identical. When qa has a high value, low-n external modes are surface modes, and
the stability is mostly determined by the magnetic shear and j‖ profiles near the plasma
surface, and internal modes have little effects on the stability of external modes.
We see the high-βp RS equilibria still have a stable window against external modes,
3.00 < qa < 3.52, although the high-βp NS equilibria are unstable when qa < 4.28.
Since the destabilizing effects of the current density near the plasma surface in both
equilibria are considered as almost same, such stabilization should reflect the difference of
the stability of internal modes, which is caused by the different q profiles. Figure 3 shows
the poloidal Fourier harmonics of the eigenfunction belonging to µ0 (fig.3(a)) and those
of the eigenfunction belonging to λ0−int (fig.3(b)) when qa = 3.53 in RS; this qa is close
to qa−mgl = 3.52 that is the marginally stable qa for external modes in RS. These figures
imply that the internal mode whose harmonics are l ≤ 3 destabilize the external mode
with the l ≥ 4 harmonics peaking at the plasma surface. However, internal modes in RS
are more stable than those in NS when 3.00 < qa < 4.50, and as the result, the effect of
internal modes on the stability of external modes in RS is weaker than that in NS.
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FIG. 2. Dependence of µ0 on qa and that of λ0−int on qa in RS, and those in NS. The spectral

structure for external modes in RS when qa ≥ 4.50 is almost indistinguishable with that in NS.

It is because the destabilizing effects for qa ≥ 4.50 are almost same as each other. In RS, a stable

window against external modes exists in lower qa, 3.00 ≤ qa ≤ 3.53.
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FIG. 3. (a) Poloidal Fourier harmonics of the eigenfunction belonging to the minimum eigen-

value of the stability matrix (external modes), and (b) those of the eigenfunction belonging to the

minimum eigenvalue obtained by solving 12 with the fixed boundary condition (internal modes),

in the βp = 0.80 and qa = 3.53 RS. The profile of l ≤ 3 harmonics in figure (a) are similar to

that in figure (b), and these harmonics destabilize external modes.
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4. Extension of the MARG2D formulation into the vacuum

The vacuum contribution to the change of potential energy is represented by the matrix
MV in Eq.(13), which is computed by using Green’s function of the Laplace operator[9].
This method deals flexibly with the shape of a conducting wall. However, the method
is limited to low n modes since it is difficult to evaluate numerically special functions
that appear in constructing MV when n becomes large. It is convenient to express
magnetic fields by a vector potential for middle n (n = 2, 3, · · · , 10) or high n (n > 10)
external modes, which was shown in Ref.[10]. We adopt the vector potential method in
the MARG2D code for the analysis of peeling modes. It is shown that the Lagrangian
density function for the change of energy in the vacuum has the same form as that for the
change of plasma potential energy, and that the MARG2D formulation is easily extended
to such external modes.
Let ψV (R,Z) be a function defined in the vacuum. The coutour ψV (R,Z) = ψs coincides
with the plasma surface ψ(R,Z) = ψs. We also assume that the outermost contour of
ψV (R,Z) = const. coincides with the cross section of the conducting wall. Next, we
introduce a vector field CV in the vacuume by

CV = ∇φ×∇ψV + TV (R,Z)∇φ. (23)

Here we assume TV is independent of φ. It is easy to see that CV is a solenoidal vector[10],
divCV = 0. The poloidal angle θ and the function TV can be defined such that

CV · ∇φ
CV · ∇θ = qs(= const.), (24)

at all points in the vacuum, where qs is the safety factor at the edge.
The perturbation of magnetic fields is given by

B = ∇× A, A = ~ξV × CV , (25)

where ~ξV is the unknown vector to be determined. By introducing the functions

Y (ψV , θ) := ~ξV · ∇ψV , V (ψV , θ) := ~ξV · ∇θ − 1

qs
~ξV · ∇φ, (26)

the change of energy in the vacuum is given by

WV = πqs

∫

LdψV dθ, (27)

L = aV |Dθ(Y )|2 + cV |
∂V

∂θ
+

∂Y

∂ψV
|2 + bV |inqsV +

∂Y

∂ψV
βψθDθ(Y )|2. (28)

Here

Dθ(Y ) := (
1

qs
∂θ − in)Y, βψθ :=

∇ψV · ∇θ
|∇ψV |2

, (29)

and

aV :=
q2
s

|∇ψV |2
1√
gV
, bV := q2

s

|∇ψV |2
R2

√
gV , cV := q2

s

R2

√
gV
. (30)



7 TH/P4-46

0 0.5 1
0

0.5

1

1.5

2

3

4

s

qj//

q
j//

(a)

0 0.5 1
0

0.01

0.02

0.03

−6

−4

−2

0

s

dp/dψp

p dp/dψ(b)

FIG. 4. Equilibrium whose parameters are A = 3.3, κ = 1.8, δ = 0.45, and βp = 1.2. (a)

Profiles of q (solid line) and j‖ (dashed line). The values of q0 and qa are 1.7 and 4.27, and

j‖|a/〈j〉a = 0.135, respectively. (c) Profiles of p (solid line) and dp/dψ (dashed line).

We can eliminate the function V by the same procedure in Sec.2 by using the poloidal
Fourier harmonics

Y (ψV , θ) =
∑

l

Yl(ψV ) exp(ilθ). (31)

Bechmark tests between the MARG2D code and the ERATO code have been excuted for
low n (n = 1 ∼ 5) external kink modes. They showed that both codes correctly capture
the external modes, and however, it becomes hard for the ERATO code to identify the β
limit against higher n modes since λ(β) computed from the ERATO code is tangent to
the β−axis (λ = 0 line). Such behavior of the ERATO code has been well known. On
the other hand, λ(β) computed from the MARG2D code is analytic near the marginal
stability, λ(β) ∝ β − βcr , and then it is easy to identify the β limit numerically.
The MARG2D code can capture high n edge modes for an equilibrium with a steep
pressure gradient and a finite value of j‖|a near the plasma surface as shown in Fig.4;
A = 3.3, κ = 1.8, δ = 0.45 and q0 = 1.7, qa = 4.27. Figure 5 shows the poloidal Fourier
harmonics of the unstable eigenfunction of the n = 40 mode for βp = 1.4. The harmonics
are packed near the plasma surface with a peeling component of m = 171 because nqa =
170.8. Such harmonics are shown in Fig.5(b) as functions of x = nq(s). We see the
envelope of an edge ballooning mode whose maxima is nq ' 150.

5. Summary

We have reported a unified approach to the stability analysis of external MHD modes
based on the theory of the Newcomb equation. Such an approach is useful for the analysis
of resistive wall modes, and also enables us to analyze the stability of the edge MHD modes
with low n to high n modes by using the same code MARG2D.
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FIG. 5. Poloidal Fourier harmonics of the unstable eigenfunction of the n = 40 mode; qa =

4.27, βp = 1.4, and b/a = 1.1.
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