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Abstract. New instabilities of fishbone type are predicted. First, a trapped-particle-induced 1== nm  instability 
with the mode structure having nothing to do with the conventional rigid kink displacement.  This instability 
takes place when the magnetic field is weak, so that the precession frequency of the energetic ions is not small as 
compared to the frequency of the corresponding Alfvén continuum at r=0 and the magnetic shear is small inside 
the 1=q  radius [the case relevant to spherical tori]. Second, an Energertic Particle Mode fishbone instability 
driven by circulating particles. Third, a double-kink-mode instability driven by the circulating energetic ions.  In 
particular, the latter can have two frequencies simultaneously: we refer to it as “doublet” fishbones.  This 
instability can occur when the radial profile of the energetic ions has an off-axis maximum inside the region of 
the mode localization.   
 
1. Introduction. 
 
The well-known fishbone instability is an 1== nm  ( m  and n  are the mode numbers) rigid 
kink displacement of the plasma core inside the q=1 radius, its frequency being either the 
precessional frequency of the energetic ions )( prω  or the bulk ion diamagnetic frequency 

)( diω  [1–3].  However, recent experiments have shown that other types of fishbones are 
possible, too.  In particular, fishbones with 42 −=n were observed in experiments in the 
NSTX spherical torus [4]; fishbones with doublet frequency ( kHz15~1f  and kHz20~2f ) 
but with the same mode numbers ( 1== nm ) occurred in the ASDEX-U tokamak [5].  Thus, 
further development of the theory is required.  One can see that there are, at least, two factors, 
which can lead to non-conventional fishbones.  They are the weak magnetic field [in 
Spherical Tori (ST)] and non-monotonic profile of the safety factor, )(rq  (which can take 
place in both STs and tokamaks).  In the present work, we study fishbone instabilities taking 
into account the mentioned factors.  In particular, we will show that even the 1== nm  
fishbone mode in STs differs from that in CTs. 
 
2. An 1nm ==  fishbone mode driven by trapped particles in spherical tori. 
 
In STs the magnetic field is lower whereas β (the ratio of the plasma pressure to the magnetic 
field pressure) is higher than in tokamaks.  When β  is very high, so that a considerable 
magnetic valley arises in the equilibrium magnetic field and Shafranov shift becomes very 
large, fishbone instabilities tend to be stabilized [6,7].  On the other hand, in many current 
experiments β  is not so high, and therefore, the results of Refs. [6,7] are not applicable to 
them.  Regimes with moderate (in the mentioned sense) β are subject to study in the present 
work.  We restrict ourselves to the precession (high-frequency) branch of fishbones associated 
with the trapped energetic particles [1]. This instability has bursting character and can 
strongly affect the energetic ions. 
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The precession fishbones are an Energetic Particle Mode (EPM) associated with the 
perturbations of Alfvén type.  Therefore, restricting ourselves to the case of the 1== nm  
perturbation, we can write the following equation: 
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where ξ  is the plasma displacement, ω  is the mode frequency, ( ) Rqk /11

|| −= −  is the 
longitudinal wavenumber, )(rq  is the safety factor, R  is the large radius of the torus, 

Dωω /=Ω , ),( sprD rαεωω = , αε  is the birth energy, sr  is the radius where nmq /= , Av (r) 

is the Alfvén velocity, 2
0/8 Bpαα πβ = , αp  is the energetic ion pressure.  The RHS of Eq. (1) 

describes the response of the energetic ions.  It is obtained from Ref. [8].  
 
Let us first recover the results of the conventional fishbone theory assuming that the system is 
on the margin of stability.  In this case, the real and imaginary parts of Eq. (1) are 
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where ξξξξ Im,Re 21 == , )/( DAA Rv ω=Ω .  If ω  were vanishing, )(rξ  would be 
constant everywhere except for a region close to sr , which provides a possibility to satisfy the 
condition 0)( =aξ , with a  the plasma radius, by taking a step function )()( 0 rrr s −= ηξξ , 

with ∫
∞−

=
x

dxxx )()( δη .  On the other hand, for this )(rξ , it is possible to satisfy Eq. (2) at 

srr < for finite Ω by taking 0|1|ln 1 =Ω− −  and 02 ≈ξ , which leads to 5.0=Ω , in 
agreement with Refs. [1,8].  However, finite Ω  changes the structure of the mode because 
two local Alfvén resonances determined by the equation AAC vkr ||)( ≡= ωω  (the subscript 

“AC” means “Alfvén Continuum”) appear in the vicinity of sr , 21 rrr s << , see Fig. 1.  The 
resonances are AsvRq /11

2,1 ω±=− , where )( sAAs rvv ≅ , from which it follows that the distance 
between the resonances is )ˆ/(212 svRrr Asω≅− , with ŝ  the magnetic shear at the 1=q  
surface.  In fact, 12 rr −  is the width of the double resonance layer in the case when the plasma 
is close to the margin of stability [the singularities at 1r  and 2r  will be removed when the 
terms proportional to ωγ Im=  will be added to Eqs. (2), (3), the spread of each resonance 
being negligible compared to ( )12 rr −  for small γ ].  Note that when the longitudinal 
wavenumber at 0=r  can be approximated as Rsk /ˆ)0(|| ≅  and )0(AAs vv ≅ , the half-width of 
the resonance layer is )0(/1 ACssres rrr ωωδ ≅−≡ .  The continuum damping arising from 
Alfvén resonances leads to a threshold beta of the energetic ions, cαβ .  The latter can be 
evaluated by considering Eq. (3) in the region 21 rrr << .  We assume that 1ξ  and 2ξ  are of 
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the same order in this region and take 0/,/~/ 2
2

2
22 ≈drddrd ξδξξ  [ )(2 rξ  can be 

approximated by a linear function because 1/ <<srδ  and, in addition, the signs of 
)( 22

||
2

Avk−ω  at 1rr <  and 2rr >  are different and, thus, the signs of the peaks )( 12 rξ  and 
)( 22 rξ  are different, too].  Then we obtain )/ˆ()/3( ADc vsRRL ωπβ αα ≈ , which agrees 

(qualitatively) with Refs. [1,8].  Numerical solution of Eq. (1) confirms this qualitative 
consideration, although it gives somewhat smaller mode frequency, see Fig. 2.   
 
It is clear that Alfvén resonances are located close to sr  provided that 1)0(/ 22 <<ACωω . 
However, this condition is difficult to satisfy when the magnetic field is weak because 

422 /1)0(/ BAC ∝ωω (we used Dωω ~ ). For instance, for NSTX we can take 9.00 =q , 
30=sr cm, 20/ == Bv ωρ αα cm, 3/ =Avvα , which leads to ≤)0(/ ACωω  

( ) 11)/)(/(5.0)0(/ 11
00 =−≈

−−qvvr AsACD ααρωω .  Therefore, in NSTX srr <<1 , see Fig.3, or 
even one of the resonances (the left resonance) can be absent.  We conclude from here that the 
weak magnetic field may prevent the conventional precession fishbone mode.  Another factor 
which tends to prevent the conventional fishbones in STs is a very small magnetic shear at 

srr < . 
 
An example of the calculated mode structure for an NSTX plasma with 10 <q  is shown in      
Fig. 3.  This structure has nothing to do with the rigid shift;  in addition, only one (very small) 
peak is seen at srr ≥ , although ω  is a little bit less than )0(ACω  and, thus, there are two local 
Alfvén resonances.  Note that 01.0/ =Dωγ  in both Fig. 2 and Fig. 3, but 0β  is higher in 
Fig . 3. 
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   Fig. 1.      Fig. 2. 
 
Fig. 1. Qualitative plot of the normalized Alfvén continuum, )0(/~

ACACAC ωωω ≡ , and the 
normalized mode frequency, )0(/)0(/~

ACDAC ωωωωω ≤≡ , in CTs and STs. 
Notations: AAC vk || ||=ω , 1r  and 2r are the points of the local Alfvén resonance. 
Fig. 2. Radial structure of a fishbone mode in a conventional tokamak with 

( )222
0 /1)( arr −= ββα , 3

0 1022.2 −⋅=β . The calculated mode frequency is 28.0/ =Dωω , 
which corresponds to 14.0)0(/ =ACωω , and the growth rate is 01.0/ =Dωγ . The used 
parameters: the aspect ratio A=5, ])/(1[2.01 21

srrq −⋅+=− , ars 5.0= .  
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3. Circulating-particle-induced fishbones with arbitrary m/n . 
 
As in the previous section, here we study the EPM fishbones.  However, in contrast to the 
previous section, now we consider circulating-ion-induced fishbone instability, and moreover, 
we consider the mode with conventional radial structure.  We assume that )(rq has an off-axis 
minimum, minq , although our results in the case of smb r<<∆<<∆  ( b∆  is the orbit width of 
the energetic ions, m∆  is the mode width) will be applicable to a plasma with a 
monotonic )(rq .  Note that the circulating-ion-induced EPM fishbones were not considered 
yet (only the diamagnetic branch was considered [3]).       
       
Thus, we consider a double kink mode characterized by a “top-hat” radial displacement, )(rξ , 
localized between two rational surfaces, 21 ss rrr << , 1sr  and 2sr  being defined by 

nmrqrq ss /)()( 21 == .  Then we can use the dispersion relation in a generic form similar to 
that in the case of the monotonic )(rq : 

,0=++ hc
A

i λλ
ω
ω             (4) 

where cλ  and hλ  are the normalized negatives of the MHD potential energy and the energy 
associated with the energetic ions, respectively, )/(|)ˆ||ˆ(||| 21 Rqvssm sAA +=ω  or, 

)/(|)ˆ(||| Rqvsm sAA =ω  when )(rq  is monotonic.  
 
Let us consider the case of smb r<<∆<<∆ .  Because of the assumption mb ∆<<∆ , the 
particles crossing 1sr  do not reach 2sr  and vice versa.  Therefore, we can easily generalize the 
energetic particle response calculated for the monotonic safety factor in Ref. [3] to the case of 
non-monotonic )(rq  (only particles crossing 1sr  and 2sr mainly contribute to kλ ).  On the 
other hand, due to the assumption sm r<<∆  we can take |ˆ||ˆ| 21 ss = , 

21
|/|/

ss rr drddrd αα ββ = , 
)()( 21 sAsA rvrv =  and write Eq. (4) as follows: 

)(~)(0 cir
c

circir FiD Ω−−Ω−≡Ω= απλ ,         (5) 

where 1/ s
cir ωω=Ω , 1/~

sAcc ωωλλ = ,  

rsA drdsRvvnmm |/)|ˆ|/)(/()/()3/2( 32
ααα βπ −= ,        (6) 

Fig. 3. Radial structure of a fishbone 
mode in the NSTX spherical torus for 

( )222
0 /1)( arr −= ββα , 3

0 1082.8 −⋅=β . 
The calculated mode frequency is 

485.0/ =Dωω , which corresponds to 
998.0/ =ACωω , and the growth rate is 

01.0/ =Dωγ . The used parameters: 
A=1.27, 87.0/ =ars , 8.0=q  for crr < , 
and 10]/)(9.1[8.0 cc rrrq −+=  for crr >  
with arc 6.0= . 
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( ) )]1/()1ln[()31(tanhtan810)( 22/112/112/3 −++++−= −−−− xxxxxxxxFπ .    (7) 
Note that Ds ωω ≈  for 2/ˆ qs ≈ , and Ω≈Ωcir  in this case.  Equation (5) was analyzed by a 
Nyquist approach.  An unstable solution was found for απ  exceeding a certain threshold 
magnitude. 
 
The found fishbone mode exists due to the resonance ||||vk=ω , which leads to a characteristic 
frequency αω vrk bss ∆′≈ |)(| ||  when |)(||)(| 2||1|| ss rkrk ′=′ . The latter is justified for )(|| rk  
symmetric with respect to minr  in the region 21 ss rrr << . However, in general, |ˆ||ˆ| 21 ss ≠  for 
a double kink mode with the finite width.  For this reason, there are two, rather than one, 
characteristic frequencies, and one can expect that an instability with two frequencies with 
given nm,  can exist.  A corresponding Nyquist analysis confirmed this possibility.  
 
4. Summary and conclusions. 
 

(i) The weak magnetic field and low shear inside the 1=q  radius are the factors 
which can lead to the 1== nm  fishbone mode with the interchange-like radial 
structure.  This will be the case when 1)0( <q  and )0(~ ACD ωω . The latter 
condition can be satisfied, in particular, in NSTX.  

(ii) It is shown that the circulating energetic ions can lead to an EPM fishbone 
instability (i.e., not only the low-frequency fishbones considered in Ref. [3] are 
possible in the presence of the circulating fast ions). 

(iii) It is shown that when the profile of )(rq  is non-monotonic, a double-kink mode 
with 1== nm  in the case of 1)0( <q  and 1/ ≠nm  in the case of 1)0( >q can be 
destabilized by the circulating energetic ions.  

(iv) A new kind of the instability, which we refer to as “doublet” fishbones, is 
predicted.  This instability is characterized by two frequencies and two growth 
rates, although it is relevant to the same double kink mode.  It seems possible that 
the predicted “doublet” instability was observed in an ASDEX-U experiment 
reported in Ref. [5]. 

 
Details concerning fishbones in plasmas with a non-monotonic )(rq  can be found in the 
recent publication [9]. 
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