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Abstract. High power ICRH produces fast ions with wide non-standard orbits,which in addition to heating the
plasma can enhance the fusion reactivity, drive currents, induce plasma rotation and affect the stability of MHD
modes. The latter effects are sensitive to the details of the distribution function. A method to self-consistently in-
clude excitation of Alfv́en eigenmodes with respect to mode amplitude and particle distribution has been developed
and implemented in the SELFO-code, which consists of the Monte Carlo code FIDO for calculating the distribution
function of the heated ions and the global wave code LION for calculating the wave field for ICRF. Oscillations of
the MHD mode amplitude, consistent with the experimentally observed splitting of the mode frequency, are found.
Numerical simulations are also consistent with the experimentally observed fast damping of the mode as the ICRH
is switched off.

1. Introduction

ICRH is a versatile heating method that cannot only provide heating but also enhance fusion
reactivity, drive currents and induce plasma rotation. Global Alfvén eigenmodes, GAEs, excited
by cyclotron heated high-energy ions are frequently seen during ICRH experiments. Excitation
of GAEs by ICRH has been proposed as a method to simulate GAE excitation by thermonuclear
alpha particles. GAEs flattens the distribution function of the heated ions locally in phase space.
Since the performance of ICRH is sensitive to the details of the distribution,the presence of
GAEs may affect the performance. In general the effect of a single GAE on thedistribution
function is small, since the regions in the phase space where the wave particleinteractions are
resonant are rather narrow. However, the effects on the distribution function and the mode
amplitude can be significantly increased when the resonant regions of several unstable GAEs
overlap. It can even lead to direct losses of fast ions as they are displaced outwards and their
orbits are intercepted by the wall.

There is a significant difference between excitation of GAEs by cyclotron heated fast ions
and thermonuclear alpha particles. ICRH does not only produce peaked density profiles of
anisotropic high-energy ions with wide trapped or non-standard drift orbits, which destabilise
the GAEs, but it also decorrelates the interactions with GAEs and partially restores the distribu-
tion function. The decorrelation of MHD resonant ions is an important effect sinceit leads to an
effective broadening of the MHD resonant regions in phase space, and hence increasethe energy
transport, the saturation level of the MHD mode and the number of regions with overlapping
modes. While decorrelation by Coulomb collisions is most important for the low energy ions
since the collision frequency decreases with energy, decorrelation by ion cyclotron interactions
increases with energy and is therefore most important for the high-energy ions, which in general
are also responsible for the excitation of the GAEs.

Splitting of the mode frequency of the excited GAEs are frequently seen during ICRH [1].
A simplified theoretical model of the non-linear dynamics of the interactions between GAEs
and fast ions [2, 3, 4] describes the experimental results rather well [1, 5].The key quantity
determining the dynamics in this model is the normalised renewal rate of the distribution func-
tion, ν = νeff/γ, whereνeff is the effective collision rate restoring the distribution function,
γ = γlinear − γdamping is the net growth rate,γlinear the linear growth rate andγdamping the
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background damping rate caused by resistivity, electron Landau damping etc [6]. The mode
splitting is interpreted as an oscillation of the mode amplitude, which provides symmetric side
bands in the frequency spectrum of the Fourier decomposed time evolution of the mode. These
side bands are centred at the mode frequency with shifts, corresponding to the oscillation period
of the mode amplitude, which are given by an effective collision frequency [4].A much larger
separation of the side bands is seen in experiments than can be explained by Coulomb collisions
[4].

When the ICRH is turned off in experiments it is observed that the mode amplitude decreases
on a time scale much shorter than the slowing down time [1].

In order to make detailed studies of the GAE dynamics during ICRH the SELFO code,used for
calculating the distribution function and the wave field self-consistentlyduring ICRH including
finite drift orbit width effects, has been upgraded to treat the interactions with GAEs [7]. Ex-
citation of toroidicity-induced Alfv́en eigenmodes, TAEs, by cyclotron heated fast ions studied
with the SELFO code demonstrates good agreements with experiments on the separation of the
side bands and the fast damping of the TAEs when the ICRH is turned off.

2. Wave-particle interaction

The guiding centre orbit of a charged particle can be defined by the invariants of the equation
of motion. The changes in these invariants due to interactions with GAEs are obtained by
integrating the equation of motion along the orbit. In absence of decorrelations by collisions
or interactions with other waves the guiding centre orbit invariants will execute a non-linear
superadiabatic oscillation in phase space. In the space(E,Pφ, µ) for axisymmetric plasmas, the
superadiabatic oscillation of an orbit will take place near its resonance along a characteristic
defined by

∆Pφ =
n

ω
∆E (1)

and
∆µ = 0, (2)

whereE is the energy,Pφ = mRvφ + eZΨ the canonical toroidal angular momentum,Ψ the
poloidal flux andµ the magnetic moment. The maximum and minimum values of the energy of
a resonant ion during these superadiabatic oscillations along the MHD characteristics depend on
the amplitude,A, of the GAE and on the non-linear bounce frequencyωNLB, with ωNLB ∝ A1/2

[8]. Decorrelation of the MHD interactions results in a diffusion process of the distribution func-
tion along the MHD characteristics. When the decorrelation time is much shorter than the non-
linear bounce time, the boundaries in energy,Emin andEmax, of the resonant regions in phase
space are determined by the resonance condition(nωφ −mωθ − ωt± 2πn0/τb)τd ≤ 2π, where
ωφ is the toroidal angular frequency,ωθ is the poloidal angular frequency,ω is the frequency of
the mode,n andm are toroidal and poloidal mode numbers,τb is the poloidal bounce time,n0

an integer representing higher harmonics andτd the decorrelation time. Phase decorrelation, as
the guiding centre moves along its orbit, occurs due to changes of the invariants by collisions or
interactions with other waves, such as magnetosonic waves used for cyclotron heating. These
changes of the guiding centre move the invariants to a new orbit, on a neighbouring GAE char-
acteristic in the phase space, with a different orbit time and hence with adifferent frequency.
As the time passes the phase between the guiding centre and the GAE starts to differ from that
it would have had if it had continued along its original characteristic. Aftera number of such
interactions the phase of the guiding centre orbit relative the wave phase will change but the
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scattering away from the original characteristic in phase space for the GAE interactions can still
be small. The phase decorrelation time by ion cyclotron interactions and Coulomb collisions is
given by

τ 3

d =
3 · 2π

σ̇EE
IC G2

I + σ̇EE
C G2

E + σ̇ΛΛ
C G2

Λ

, (3)

whereσ̇J1J2 is the time derivative of the covariance of the invariantsJ1 andJ2 caused by the op-
erator denoted by the subscript, whereIC andC denote ion cyclotron interactions and Coulomb
collisions respectively.G is the derivative of the change in phase angle in the direction de-
noted by the subscript, whereI is along the characteristic of the ion cyclotron interaction and
Λ = µB0/E.

When the resonant regions of GAEs with different toroidal mode numbers or frequencies over-
lap the diffusion in phase space becomes two dimensional, resulting in larger regions where the
distribution function is flattened.

The change in energy due to interactions with an MHD mode for which the magnetic moment
is conserved is given by [9].

dE

dt
= eZE1 · vd0 + µ

∂B1‖

∂t
, (4)

whereE1 = −ξ1 ×B0 is the first order electric field,ξ1 the first order plasma displacement and
B0 the zeroth order magnetic field. The zeroth order drift velocity,vd0, is caused by gradients
and curvature ofB0. In general there are several resonant regions in phase space in which the
variation of the change in energy,∆E, of the particle due to interaction with the MHD mode has
a rather complicated behaviour, sometimes separated by a surface where∆E vanishes causing
boundaries even in the resonant regions. Mode excitation can appear when the distribution func-
tion increases with energy along the GAE characteristics in some part of the resonant region in
phase space. For excitation it is necessary that the net growth of all resonantinteractions exceed
the damping of the mode by other effects such as resistivity, electron Landau damping etc, here
referred to as background damping. In general the distribution function will be decreasing with
energy along a set of characteristics in one or several resonant regions, providing an intrinsic
damping stabilising the mode, and along other characteristics increasing with energy and hence
destabilising the mode. An unstable mode will then first grow while flattening thedistribution
function in the unstable regions and thereby reducing the free energy and possible growth of the
mode. In absence of the background damping and the intrinsic damping the mode amplitude
will saturate at a finite level. As the energy distribution flattens in themost unstable regions the
drive weakens and the stabilising effects in other parts of phase space start to dominate, resulting
in a damping of the mode while locally flattening the distribution function along the character-
istics also in the stable regions. Thus even in the absence of background damping the mode is
expected to be damped. It is therefore important to include the interactions in thewhole phase
space when studying the dynamics of GAE mode excitation. To allow self-consistentstudies
of the GAE mode dynamics during ICRH the ICRH code SELFO has been upgraded to also
include interactions with GAEs [7]. This has been done by including the changes in the orbit
invariants caused by the MHD interactions in the Monte Carlo code FIDO [10], which describes
the evolution of the distribution function of the cyclotron heated ions and at the sametime cal-
culating the corresponding change of the amplitude of the GAEs. The invariants(E,Pφ,Λ) are
used in the SELFO code. The displacementξ1 in Eq. 4 is obtained either by solving the lin-
earised MHD equation with the LION [9, 11] code or from a model [2]. The incrementfor the
change in energy,∆E, is obtained by integrating Eq. 4 over a decorrelation time and depends
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on the phase between the guiding centre of the resonant ion and the wave. The change inΛ is
related to the changes in energy by∆Λ = Λ∆E/E.

3. Results

The effects of the decorrelation of the wave-particle interactions by ICRHon the dynamics of
the GAE excitation is studied with the SELFO code for a JET-likeH-minority heating scenario
with 5 MW of ICRH power at51 MHz with +90o phasing between the currents in the antenna
straps in a plasma with circular cross section,r0 = 0.9 m, R0 = 2.97 m, nH/nD = 0.04,
nD = 2 × 1019 m−3, Zeff = 2.2, Te(0) = TD(0) = 10 keV , B0 = 3.45 T andIp = 2.6 MA.
The distribution function ofH ions in absence of GAEs is first computed. The dynamics of an
unstable TAE, illustrated in Fig. 1, is then studied for three cases using thesimplified model of
the mode given in Ref. [2]: in absence of collisions and ICRH; with collisions only; and with
collisions and ICRH. The simulations give for the three cases an almost identical initial growth
rateγ = 3.8 × 104 s−1. For a mode frequency ofω = 1.45 × 106 s−1 we obtainγ/ω = 2.6 %.
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Figure 1:Evolution of the TAE mode amplitude, dotted line without collisions and ICRH interactions,
dotted dashed line collisions only and full line ICRH interactions and collisions.

When the mode grows the distribution function in the high-energy regions in phase space is
flattened along the MHD characteristics, resulting in a weaker drive.The interactions in the
regions in phase space where the resonant ions have lower energy become more important.
If the local distribution function decreases with energy along the MHD characteristics these
interactions will then damp the mode on longer time scales. The intrinsic dampingrate in
absence of collisions and ion cyclotron interactions becomesγd = 1.4 × 104 s−1, γd/ω = 1 %.
In absence of mechanisms restoring the distribution function, such as collisionsor ion cyclotron
interactions, the mode will be damped out by the intrinsic damping even in the absenceof a
background damping. The presence of ion cyclotron interactions and Coulomb collisions will
restore the unstable regions in phase space with new ions entering the resonant regionsand by
removing ions from them. The new or lost resonant ions can either damp or excite the mode
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depending on where in phase space they enter or leave the resonant regions. Whether the mode
is damped or excited depends on the gradients along the characteristics outside the resonant
regions. The simulations demonstrate that the initial growth rate is not significantly affected
by Coulomb collisions or by ion cyclotron interactions. However, the damping afterthe initial
excitation depends strongly on the decorrelations. When collisions are included the damping
rate increases toγd = 2.1 × 104 s−1 while collisions and ion cyclotron interactions together
decrease the damping rate toγd = 0.7 × 104 s−1.

As the particles are heated by ICRH and enter the resonant region they are in general displaced
outwards with respect to minor radius while transferring energy to the mode. This may lead to
an oscillation of the mode amplitude, or rather bursts of GAE mode activity, since the flattening
and restoration of the distribution function take place on different time scales. The initial con-
dition of starting the GAE simulation with a preheated distribution functionaffect essentially
only the first GAE burst. In the following bursts the distribution function is partially restored
by collisions and ion cyclotron interactions. That the growth and damping of the GAE mode
take place on the same time scale hints that the unstable GAE mode takes off when the lin-
ear growth rate just exceeds the background damping as assumed in the model by Berk et al
[2]. If we exclude ICRH interactions in the simulation the distribution function becomes more
slowly restored by collisions alone resulting in less frequent bursts of GAEmode activity. The
infrequent bursts give rise to a frequency splitting of the Fourier decomposed time dependent
wave field. In absence of ion cyclotron interactions the typical period of the fluctuations of the
mode amplitude becomes1.5 ms, corresponding to∆ω = 2π × 6.7 × 102 s−1. When both
ion cyclotron interactions and Coulomb collisions are included the resulting periodbetween the
bursts decreases to0.5 ms, corresponding toγ = 2π × 2 × 103 s−1. The variation of the mode
amplitude in the time interval2 to 4 ms is shown in Figs. 2(a) and 2(b) for the two cases and
the power spectrum of the side bands in Fig. 3.
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Figure 2:Oscillation of the mode amplitude.
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When the ICRH is turned off att = 10 ms the mode amplitude damps rapidly, as can be seen
in Fig. 4 with a damping rateγd = 0.9× 104 s−1. Decorrelations by collisions will still cause a
flow of particles through the resonant regions.
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Figure 3: Power spectrum of side bands with
collisions dashed line, both collisions and ICRH
full line.
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Figure 4: The evolution of the TAE mode am-
plitude when ICRH and collisions are included.
ICRH is turned off at 10ms.

The excitation of a single TAE mode resulted in a change of the fast particle energy content with
only 1 % after10 ms of mode activity. The results are within the noise level and for interaction
with a single mode no significant effect can be seen on the heating.

4. Conclusions

A model allowing self-consistent studies of the effects of decorrelations by ICRH and Coulomb
collisions of ions interacting with GAE modes has been developed and implementedin the
SELFO code taking into account the complex structure of the resonant regions in phase space
[7]. The variation of the distribution function produces regions destabilising and stabilising
GAEs. A typical intrinsic damping rate of about1 % is found, comparable with the damping
by resistivity and ELD and the growth rate of the GAEs. The decorrelation of fast particles and
the restoration of the distribution function by ICRH have a strong effect on the dynamics of the
modes. Particles are constantly pushed in and out of the resonant regions, leading toa dynamic
course of events of the mode amplitude. The typical oscillation period, which is of theorder
1 ms, of the mode amplitude is seen to decrease with increasing decorrelation by ICRH, which
is in agreement with experimental observations [4] and numerical simulations[12, 13]. The fast
decay of the TAE-mode, which is observed in experiments as the ICRH is turned off, is also
reproduced in the simulations.
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