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Abstract. The time evolution of the plasma current during a tokamak disruption is cal-
culated by solving the equations for runaway electron production simultaneously with the
induction equation for the toroidal electric field. The resistive diffusion time in a post-
disruption plasma is typically comparable to the runaway avalanche growth time. Accord-
ingly, the toroidal electric field induced after the thermal quench of a disruption diffuses ra-
dially through the plasma at the same time as it accelerates runaway electrons, which in turn
back-react on the electric field. When these processes are accounted for in a self-consistent
way, it is found that (1) the efficiency and time scale of runaway generation agrees with
JET experiments; (2) the runaway current profile typically becomes more peaked than the
pre-disruption current profile; and (3) can easily become radially filamented. It is also shown
that higher runaway electron generation is expected if the thermal quench is sufficiently fast.

1. Model equations

Tokamak discharges are often terminated by plasma disruptions causing enormous me-
chanical and thermal loads on the vessel. Of particular concern in large tokamaks is
the acceleration of “runaway” electrons to relativistic energies, which may seriously
damage the first wall on impact. Until now, despite several decades of theoretical and
experimental research on runaway electrons, there has been little quantitative under-
standing of their production and behaviour in tokamak disruptions. Runaway electron
theory has traditionally focused on the physical mechanisms producing the fast elec-
trons and how to calculate their efficiency, but relatively little effort has been devoted to
analyzing the consequences for what actually happens in a tokamak disruption. This is
the topic of the present work, where the post-disruption runaway current profile is cal-
culated from pre-disruption plasma parameters. For this calculation it is important to
treat the toroidal electric field in a consistent manner. This field is initially induced by
the drop in electron temperature during the thermal quench of the disruption, leading
to a dramatic increase in the plasma resistivity. The electric field accelerates runaways,
whose rising current limits the further growth of the field. Since the runaways thus
modify the electric field responsible for their own creation, the system is nonlinear and
exhibits mathematically interesting behaviour. Its complexity is further enhanced by
the fact that the growth rate of the runaway population is comparable to the resistive
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diffusion rate of the electric field. This field thus diffuses through the plasma whilst
generating the runaway current and being modified thereby.

In our analysis [1], we do not consider the very first stage of a disruption, which is
characterised by MHD instability, but instead focus on the subsequent stage, in which
the plasma has regained axisymmetry, cools down, and the current evolves from its
Ohmic (or non-inductive) pre-disruption state to one where all the remaining current
is carried by runaway electrons. The production of runaways takes about 5-10 ms in
JET and is the result of two distinct physical processes: primary (Dreicer) generation
and secondary (avalanche) generation. The former is caused by a diffusion process in
velocity space and generates runaways (in a pure plasma) at the rate [2]
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is caused by collisions at close range between existing runaway electrons and thermal
ones and produces new runaways at the rate [3]
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where Ec = mec/eτ is the relativistic cut-off field below which no runaway generation
can occur [4]. Adding these equations and writing the result in terms of dimensionless
variables gives

∂tn = F (E, x, t) + n(E − n̂), (2)

where n̂ = ne(x)/ne(0), n(x, t) = nr/nr0, x = r/a is the normalised radius, nr0 = j0/ec
and j0 is the pre-disruption current density on axis. Furthermore E = E‖/Ec(0), time
has been normalised to 3(2/π)1/2τ0 ln Λ, with τ0 = τ(x = 0), and we have written

F (E, x, t) =
3 ln Λne(0)n̂19/8

2π1/2nr0u15/4E3/8
exp


− 1

4u2E
−
√

2

u2E


 , (3)

with u2(x, t) = Te(x, t)/mec
2 � 1. The electric field in these equations is governed by

the induction equation, ∇2E‖ = µ0∂j‖/∂t, where j‖ is the current density. The simplest
way to close the system is to assume that the current consists of two parts: a thermal
current governed by (the neoclassical) Ohm’s law, and a runaway current carried by
electrons all moving at the speed of light, j‖(x, t) = σ‖(x, t)E‖(x, t) + nr(x, t)ec. This
neglects the time required to accelerate a newly generated runaway electron to c and
is accurate if most runaways are created by the secondary mechanism since the accel-
eration time tacc ∼ mec/eE‖ = τ/E is then shorter than the avalanche growth time
tav ∼ τ ln Λ/E. In a plasma with circular cross section the equation for the electric
field thus becomes

∂t(σE + n) = α−1∇2E, (4)

where ∇2(· · ·) = x−1∂x[x∂x(· · ·)], σ(x, t) = meσ‖/nr0e
2τ0, and
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with IA = 4πmec/µ0e the Alfvén current. The boundary condition on the electric field
is E(1, t) = 0 if the plasma is surrounded by a perfectly conducting wall at x = 1.
If the wall is instead at x = b > 1, with a vacuum region in the region 1 < x < b,
then the boundary condition at x = 1 is obtained by matching to the vacuum solution
E(x, t) ∼ ln(b/x), giving E(1, t) + (ln b)∂xE(1, t) = 0.

2. Disruption dynamics

Equations (2) and (4) govern the evolution of the normalized runaway current density
n(x, t) and electric field E(x, t), if Te(x, t) and hence σ(x, t) are given. The thermal
quench is described by letting Te drop rapidly, typically as

Te(x, t) = T1(x) + [T0(x) − T1(x)]e−t/t0 .

We have solved Eqs. (2) and (4) numerically for a large number of cases with JET-
like parameters, and generally find good agreement with experimental observations –
sometimes within considerable uncertainties due to the violent nature of the disruption.
The fraction of the pre-disruption current that is converted to runaway electrons is
typically around 1/2, the time scale for runaway generation about 10 ms, and the edge
loop voltage of the order of 100 V. These results depend to some extent on the post-
disruption temperature, which is unknown but has been conjectured to be around 10
eV from indirect evidence [5] and is therefore chosen accordingly in the simulations.

Figure 1 shows an example of such a simulation where the paramaters are chosen to
match a recent JET disruption experiment (pulse 63133): T0 = (1 − 0.9x2)2 · 3.1 keV,
T1 = 10 eV, ne(x, t) = (1−0.9x2)2/3g(t) ·2.8 ·1019 m−3, g(t) = e−(t/t0)2 +1.96e−(t−t1)2/t22 ,
t0 = 0.5 ms, t1 = 10 ms, t2 = 3.2 ms, a = 1 m. The initial plasma current, I0 = 1.9
MA, is converted to a runaway current of 1.3 MA in the simulation (1.1 MA in the
experiment), with 3/8 of the runaways produced by the Dreicer mechanism and the
remaining 5/8 by the secondary avalanche. These numbers are typical: in most JET
simulations somewhat more than half the runaways are secondaries. A further feature
seen in the simulation is that the post-disruption current, which is carried by runaway
electrons, has a more peaked profile than the pre-disruption current. In fact, the current
density actually increases in the centre of the discharge although the total current falls.
This may have implications for the MHD stability of the post-disruption plasma. The
reason for the peaking of the current is that runaway generation is most efficient in
the centre of the plasma, so that the growth of the toroidal electric field is first limited
there. Some time after the thermal quench, the electric field therefore has an off-axis
maximum, see Fig. 2, causing inward diffusion of the field and hence increased runaway
production near the magnetic axis. Notice in Fig. 2 that the electric field is much larger
inside the plasma than at the edge.

The agreement between theory and experiment in JET gives confidence that the model
can be used for ITER predictions. The calculated conversion of Ohmic plasma current
to runaways is calculated to be be higher in ITER than in JET; the runaways typically
carry about 3/4 of the pre-disruption current. The reason for this is that the efficiency
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Figure 1: Simulation of a recent JET disruption (pulse 63133).

of the runaway avalanche increases with plasma current [3]. Secondary production is
by far the dominant generation mechanism in ITER. For both JET and ITER, the
results from solving Eqs. (2) and (4) agree well with full Fokker-Planck simulations of
the fast electron population carried out with the Arena code, which also calculates
the toroidal electric field self-consistently [7].

The outcome of the numerical simulations can be understood analytically by noting
that the primary production of runaways is very swift, see Fig. 1. The role of primary
production is mainly to provide a “seed” for the secondary avalanche. After some short
time, t∗, most subsequent runaway production will occur by the secondary mechanism
so that F can be neglected in Eq. (2). Assuming E � 1, eliminating E = ∂t ln n from
Eq. (4) and integrating with respect to time then gives

σ∂tN = j∗ − eN − α−1∇2(N∗ − N)
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Figure 2: Loop voltage for the simulation shown in Fig. 1.

where N(x, t) = ln n(x, t), N∗(x) = ln n(x, t∗) and j∗(x) = σ(x, t∗)E(x, t∗) + n(x, t∗)
is the total current at t = t∗. From this partial differential equation for the runaway
density an ordinary differential equation for the final state N(x,∞) follows by setting
∂tN = 0,

eN = j∗ − α−1∇2(N∗ − N). (5)

This equation allows the final runaway current profile to be determined if the runaway
seed from primary generation, N∗(x), and the total current profile j∗(x) at t = t∗ are
known. When secondary production dominates, the time t∗ occurs very early and j∗ is
approximately equal to the initial current profile.

In the limit α → ∞, Eq. (5) implies that all the current j∗ is converted to runaways.
In this limit, the skin time is so large that no electric field can escape from the plasma
and all the field is thus available for runaway production. Indeed, when α → ∞ Eq. (2)
reduces to

∂n
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Hence all the seed current j∗(x) is replaced by runaways on a time scale set by the
avalanche growth time and the cooling time.
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In JET and ITER α >∼ 102, and it is therefore surprising at first sight that even more
runaways are not created than suggested by the simulations discussed above. The
mathematical reason for this is that Eq. (5) contains another large term, namely,
∇2N∗, which is large since primary production is exceedingly sensitive to the electron
temperature, making N∗(x) highly peaked in the centre of the discharge. Indeed, in
the limit of a fast thermal quench and small seed from primary production, one can
show that [1]

∇2N∗ ' −∇2
(
ED/4E‖ +

√
2ED/E‖

)
� 1.

It follows from Eq. (5) that the final current is always smaller than the initial current,
i.e., the runaway current can never exceed the pre-disruption current, as always ob-
served in experiments. This conclusion follows by taking the first moment of Eq. (5),
giving ∫ 1

0
(j∗ − eN )xdx = −α−1 d(N − N∗)

dx

∣∣∣∣∣
x=1

≥ 0,

since N(x) ≥ N∗(x) for all x and we have assumed that there are no runaways on the
boundary.

Another immediate consequence of Eq. (5) is that any radial fluctuations in the seed
profile N∗(x) are “inherited” by the final runaway current profile N(x). Because the
Dreicer function (3) depends sensitively on the electron density and temperature, it is
likely that N∗(x) exhibits rapid radial variations. These variations are reflected in the
final current profile even if most runaways are eventually generated by the secondary
mechanism. This is because the highest derivative in Eq. (5) operates on N−N∗, so that
this difference cannot vary suddenly. Linearisation of Eq. (5) shows that sufficiently
fine-scale fluctuations, of wave-length ∆x <∼ α−1/2, are similar in N∗(x) and N(x).
Figure 2 illustrates this effect by showing the current profile in a simulation where all
parameters are chosen as in Fig. 1 except the cooling time t0, which varies sinusoidally
with radius as t0 = [1 + 0.25 sin(20πx)] · 0.5 ms.
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Figure 3: Current profiles from a simulation with the same parameters as in Fig 1, but
with t0 varying sinusoidally by ±25%.
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3. Effect of finite cooling time

The conventional expression (1) for primary runaway generation was derived assuming
quasi-stationary conditions [2]. Although the number of runaways increases with time,
the bulk of the electron distribution function is assumed to be in a steady state. In
a tokamak disruption, this assumption requires the characteristic time in which the
plasma cools down to be much longer than the collision time for electrons near the
runaway threshold energy. In JET, where the thermal quench is faster than 1 ms, this
requirement is often only marginally satisfied, at best. In ITER it may fail altogether
depending on the temporal structure of the thermal quench (in particular, the delay
between its first and second stages). This should make primary runaway generation
much more efficient since incompletely thermalised electrons in the tail of the hot, pre-
disruption distribution can be accelerated relatively easily. This has been noticed in
numerical simulations of disruption mitigation by “killer pellets” [8,9]. On the other
hand, if the magnetic field is ergodised and connects to the wall, then the high-energy
electron population is depleted, which should result in lower runaway production.

An analytical understanding of runaway generation in a cooling plasma can be gained
by solving the kinetic equation for suprathermal electrons colliding with a Maxwellian
with decreasing temperature [7]. If the velocity v is normalised to the instantaneous
thermal speed vTe = [2Te(t)/me]

1/2 and the distribution function is written as f(v, t) =
nef̃(v, t)/π3/2v3

Te, then f̃ satisfies
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Here the increment of the time variable s is normalised to the instantaneous collision
time, ds/dt = ν(t) with ν(t) = (c/v3

Te)/τ , and δ = −(1/2)d lnTe/ds measures the
cooling rate. For simplicity, the density is kept constant and the electric field is ignored.
When the parameter δ is constant and small, so that Te(t) = T0(1 − t/t0)

2/3 with
t−1
0 = 3δν(0), the kinetic equation can be solved by matched asymptotic expansion.

The result is that f approaches a self-similar form
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where y = vδ1/3, indicating the development of a high-energy tail f ∼ v−3 in the
distribution function.

In a disruption, the electric field E‖ initially increases in proportion to T−3/2
e . The

size of the runaway population created by this field can be estimated as the number

of electrons above the (normalised) critical runaway velocity vc =
√

ED/2E‖. This

velocity falls in the tail (y > 1) of Eq. (6) if
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1
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where the right-hand side is evaluated at the end of the thermal quench, when the
temperature has fallen to T1 � T0, and can be written as [10]

ED

2E‖
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=
3µ0eqRne

B

√
πT1

8me

.

If the condition (7) is satisfied, then the thermal quench is so quick that Dreicer runaway
production is significantly more efficient than suggested by the usual formula (1). This
may well be the case in JET and seems even more likely in ITER.
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