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Abstract. The high-β operating regime of spherical tokamaks (ST), such as in NSTX and
MAST, make them attractive fusion devices. For access to such high β regimes, it is necessary
to heat and to drive currents in ST plasmas. While such plasmas are overdense to conventional
electron cyclotron waves, electron Bernstein waves (EBW) offer an attractive means toward this
purpose. The applications of EBWs in STs range from plasma start-up and heating of the ST
plasma to modifying and controlling its current profile. The controlling of the current profile
could provide better confinement as well as help suppress neoclassical tearing modes. This
paper deals with two particular topics. The first topic is on the relevance of relativistic effects
in describing the propagation and damping of EBWs. The second topic is on plasma current
generation by EBWs.

1. Introduction

In order to achieve the high βs, STs generally operate at low magnetic fields and
high densities such that ωp/ωc >> 1 over most of the plasma. Here ωp and ωc are
the angular electron plasma and cyclotron frequencies, respectively. Such an overdense
nature of ST plasmas makes them unsuitable for heating and/or current drive by the
conventional ordinary O and extraordinary X modes in the electron cyclotron (EC) range
of frequencies. For low harmonics of ωc the X and O modes are cutoff near the edge
of the plasma. For high harmonics these modes do access the core of the ST plasma
but are essentially undamped when they encounter the electron cyclotron resonances.
However, EBWs offer an attractive alternative in the EC frequency range as they have
no density cutoffs, and damp strongly on electrons at the fundamental, or any harmonic
of the Doppler-shifted electron cyclotron resonance [1]. Since EBWs cannot propagate
in vacuum (like the X and O modes) they are excited, indirectly, by mode conversion of
externally launched O mode or X mode [1, 2, 3, 4]. In this paper we do not discuss the
mode conversion excitation of EBWs as it has already been covered in the literature.

In studying the propagation and damping of the traditional X and O modes in the
EC frequency range it has been noted that weakly relativistic effects are important [5, 6].
We find that for EBWs the same, weakly relativistic, formalism for the wave description
cannot be used. Also, for EBWs, unlike the X and O modes, k⊥ρe can easily exceed
1 as the waves propagate away from the mode conversion region into the plasma core
[1]. (k⊥ is the wave vector perpendicular to the magnetic field and ρe is the electron
Larmor radius.) Thus, we cannot do any Larmor radius expansions of the dielectric tensor
elements. Consequently, we have developed a code R2D2 which solves the fully relativistic
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wave dispersion relation. Our initial results from R2D2 indicate that relativistic effects
are important for EBWs in a ST plasma away from the mode conversion edge region.

An important role for EBWs in STs could be to generate non-inductive plasma cur-
rents. A study of the propagation of EBWs in a toroidal equilibrium using a non-
relativistic ray trajectory code shows that the parallel wave number n‖ = ck‖/ω can
change from well below 1 to above 1 along the ray path [1]. (k‖ is the component of the
wave vector parallel to the magnetic field, c is the speed of light, and ω is the wave angular
frequency.) This is primarily due to the poloidal magnetic field. Consequently, the acces-
sible phase space for current drive by EBWs is richer than for the X and O modes. For
the X and O modes the resonance surfaces for the wave-electron interactions are elliptic
while the diffusion paths lie along hyperbolas. The EBWs not only have these properties
for n‖ < 1, but also the property that the resonance surfaces become hyperbolic and the
diffusion paths become elliptic for n‖ > 1. A drift kinetic Fokker-Planck code DKE [7]
which includes a quasilinear RF diffusion operator and the effect of trapped electrons
is being used to study EBW current drive. Preliminary results show that in the outer
half of a ST plasma, where trapped electron population is significant, EBWs effectively
drive current through the Ohkawa mechanism [8, 9]. In the core of the plasma where the
fraction of trapped electrons is reduced, EBWs effectively generate current through the
Fisch-Boozer scheme [10].

2. Relativistic Propagation of Electron Bernstein Waves

We follow Trubnikov’s formalism for the derivation of the relativistic dielectric tensor
[11]. From the linearized Vlasov equation, the perturbed distribution function is
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The plasma conductivity tensor is obtained from the current density

~j = q

∫
d3p

~p

mγ
(f0 + f1) = σ · ~E (6)

There are two complementary approaches for obtaining σ [11]. The first is to perform
the momenta integrals analytically and do the φ′ (time history) integral in (1) numerically.
This essentially works for a relativistic Maxwellian f0(p⊥, p‖). The second technique, is
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to perform the φ′ (time history) integral analytically and do the momenta integrals in (6)
numerically. This technique is valid for arbitray f0’s.

For a relativistic Maxwellian the first approach leads to the following form of the
conductivity tensor:
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where ωp, ωc, vt are the rest mass electron plasma frequency, cyclotron frequency, and
the thermal velocity, respectively, Kν is the modified Bessel function of the second kind
of order ν,
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For any equilibrium distribution function f0(p⊥, p‖) the second approach leads to the
following conductivity tensor:
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We have developed two separate numerical routines within the code R2D2 which are
based on the two relativistic formalisms discussed above. For a variety of cases we find
that the two formalisms lead to numerically identical results. Since we are not aware
of any similar code in existence, this allows us to benchmark our code. In Fig. 1 we
compare the results obtained from the relativistic description (red) with those obtained
from the non-relativistic description (blue) in the mode conversion region for NSTX model
equilibrium [1]. We find that there is essentially no difference between the two cases in the
low temperature region where the mode coupling takes place. Thus, the mode conversion
formalism developed in [1, 2, 3, 4] is not modified by relativistic effects. However, the
EBW part of the dispersion relation begins to show some differences away from the mode
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conversion region. In Fig. 2 we show the dispersion characteristics of EBWs as a function
of n‖ for a uniform plasma with electron temperature of 3 keV, ωp/ωc = 6, and ω/ωc = 1.8.
It is now evident that there are significant differences between the relativistic and non-
relativistic properties of EBWs. This could have important consequences when studying
the propagation and damping of EBWs in ST plasmas.
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Figure 1: Real (left) and imaginary (right) part of n⊥ = ck⊥/ω versus distance on the
equatorial plane for NSTX-type parameters [1]. The comparison is between the relativistic
(red) and non-relativistic (blue) characteristics of ECRF waves in the mode conversion
region.
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Figure 2: Real (left) and imaginary (right) part of n⊥ versus n‖. The comparison is
between the relativistic (red) and non-relativistic (blue) characteristics of EBWs.

3. Electron Bernstein Waves Current Drive

As part of the overall scheme to use EBWs for driving plasma currents in a ST,
and possibly for achieving a steady-state operation, it is important to understand the
parametric dependence of EBW current drive efficiency. The relativistic code DKE [7]
is being used for studying the EBW driven current. This code solves in two-dimensional
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momentum space, on a given flux surface, the neoclassical drift-kinetic equation with a
RF quasilinear diffusion operator. In deriving the equations solved in DKE, we assume
that the electron guiding center drift velocity across the flux surfaces is small compared to
its streaming velocity along the field line. We further assume weak collisionality so that
the banana approximation is valid. This implies that the bounce time of trapped electrons
is much shorter than the collisional detrapping time. The bounce time is also assumed to
be shorter than the RF induced diffusion time. Consequently, the electron distribution
function is uniform along the field lines. To leading order in the small parameter defined by
the ratio of the bounce time to the drift time, the electron distribution function f(p⊥, p‖) in
momentum space is obtained from the bounce averaged Fokker-Planck equation 〈C(f) +
Q(f)〉, where C is the collision operator and Q is the quasilinear diffusion operator.
DKE is used to solve this Fokker-Planck equation for f(p⊥, p‖). The quasilinear diffusion
coefficient Q(f) in DKE is determined from R2D2. By taking the appropriate moments
of f we can solve for the parallel current and the power dissipated and, consequently,
evaluate the current drive efficiency η = (J/enevte)/(P/νemenev

2
te). Here J is the current

density, P is the density of power dissipated, e is the electron charge, me is the electron
mass, ne,vte, and νe are the local electron density, thermal velocity, and collision frequency,
respectively. In our initial studies described below, we use the non-relativistic form of the
EBW diffusion coefficient in Q(f). The non-relativistic evaluation takes substantially less
time than the relativistic calculation.
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Figure 3: Left: wave frequency (fw), second harmonic of the electron cyclotron frequency
(2fce), and the Doppler-shifted (second harmonic) electron cyclotron frequency (in green)
as a function of ρ (radial distance normalized to the minor radius); right: current density
(red) and efficiency (blue) as a function of ρ.

As an example of EBW current drive, we consider a NSTX-type plasma with major
radius of 0.9 m, minor radius of 0.6 m, on axis magnetic field of 0.35 T, plasma current
of 0.8 MA, peak electron temperature of 3 keV, and a peak electron density of 3 × 1019

m−3. The density and temperature profiles are assumed to be parabolic. In this high
β regime, the poloidal field is comparable to the toroidal field on the outboard part of
the plasma. We assume an EBW wave frequency of ω/2π = 11.8 GHz and n‖ = 1.5.
We also consider a single EBW ray propagating along the equatorial plane with an input
power in the ray of 1 MW. The left panel of Fig. 3 shows that the wave frequency
matches the Doppler-shifted (second harmonic) electron cyclotron frequency where the
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total magnetic field is a minimum. The results from DKE are plotted in the right panel
of Fig. 3. The peak current density is Jpeak ≈ 0.64 MA m−2. At this location the density
of power dissipated is Ppeak ≈ 1.4 MW m−3. This leads to ηpeak ≈ 3.2. This current drive
efficiency is significantly higher than is generally achieved by conventional ECRF waves in
tokamaks. From the left panel of Fig. 3 the location where the EBW frequency matches
the Doppler-shifted cyclotron resonance occurs where the magnetic field is nearly flat (red
line tangent to the green line). This leads to a large optical depth and the EBW interacts
with energetic electrons in the distribution function. Consequently, we also obtain high
current drive efficiencies. This shows that the non-monotonic magnetic field profile has
important implications for EBW current drive in STs. The left panel of Fig. 4 shows that
the phase velocity of the waves is in a direction opposite to the direction of the driven
current. The region of maximum diffusion is situated near the trapped/passing boundary
leading to a large EBW-induced trapping of passing electrons. The right panel illustrates
this more clearly. The depletion of electrons due to trapping induced by EBWs in the
region where the wave-particle resonance exists, and the accumulation of electrons due
to detrapping on the opposite side (in p‖) contribute to the current. This indicates that
the current driven is the Ohkawa current [8, 9] rather than the Fisch-Boozer current [10].
Recent numerical simulations [12] have shown similar results.
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Figure 4: Left: contours of Maxwellian distribution (black) and distribution function (red)
in the presence of EBW diffusion coefficient (contours in green); right: the parallel compo-
nent of the RF driven distribution function, with the Maxwellian contribution subtracted
off, as a function of the parallel momentum normalized to the thermal momentum.

Figure 5 corresponds to Fig. 3 for a wave frequency of 19.5 GHz and n‖ = 0.5. The
peak current density is Jpeak ≈ 2.6 MA m−2. At this location the density of power
dissipated is Ppeak ≈ 6.1 MW m−3. This leads to ηpeak ≈ 1.9. From the two panels in Fig.
6 we note that this is the conventional Fisch-Boozer scheme of current drive. The EBW
induced diffusion of electrons changes the resistivity non-symmetrically (in p‖) leading to
the current generation. However, the trapping effects reduce the current drive efficiency.
Studies are underway to determine the conditions for optimizing the Fisch-Boozer current
drive and the Ohkawa current drive schemes in an ST.

In conclusion, our calculations show that relativistic effects are important in describing
the propagation and damping of EBWs in ST plasmas. Furthermore, our calculations on
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Figure 5: Left: wave frequency (fw), second (2fce) and third (3fce) harmonic of the
electron cyclotron frequency, and the corresponding Doppler-shifted electron cyclotron
frequencies (in green) as a function of ρ; right: current density (red) and efficiency (blue)
as a function of ρ.
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in the presence of EBW diffusion coefficient (contours in green); right: parallel component
of the RF driven distribution function, with the Maxwellian contribution subtracted off,
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EBW current drive show that the Ohkawa current drive is more suitable for the outer
half of the plasma while the Fisch-Boozer current drive works well near the core. Thus,
the EBW spectrum could be tailored, according to the needs, for current generation and
current profile control. Detailed studies on relativistic effects in EBW propagation and
damping, and on the EBW driven current are continuing. Along with the previous results
on coupling and excitation of EBWs the results from these studies will provide a general
basis for defining the role of EBWs in present-day experiments and future ST power
plants.
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