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Recent advances on theoretical studies of various non inductive current drive methods (neutral beam injection,
oscillating magnetic fields and helicity injection) which apply to compact toroids and RFPs are presented.

1. Neutral Beam Injection into Field Reversed Configurations Sustained by Rotating
Magnetic Fields

The Monte Carlo Code already used to study neutral beam injection (NBI) into high flux field
reversed configurations (FRC) [1] was employed to study tangential neutral beam injection
(TNBI) into moderate flux FRCs sustained by rotating magnetic fields (RMF) [2]. The main
goal of this study was to determine the minimum increases in experimental parameters, and the
corresponding optimal beam parameters, necessary for efficient beam coupling. Considering
FRCs with the same size as those produced in the Translation, Confinement and Sustainment
(TCS) experiment [3], four different equilibria were analyzed. Most of the results presented
below were obtained using a somewhat higher magnetic field and temperature than can be
obtained in present experimenBs=75 mT,Te=140 eV,n=5x10" m?, r=0.3 m,r=0.37 m,
Ls=2m, y= rdr=0.8). Two injection geometries, shown in Fig. 1, were considered. In one case
the beam was injected through the ends (1), at a small aggte the FRC axis while in the

other (1) the beam was injected almost perpendicular, at some point along the separatrix.

The results obtained without including the RMF show that even at the lowest practical
energies (10 keV), trapping D beams is very difficult due to the low magnetic flux anghigh
value, typical of RMF sustained FRCs. Hydrogen beams were therefore employed in all the
calculations. In injection through the ends the beam current is concentrated in the mirror
region and very low current drive efficiencies and deposited power result. This is seen in Fig.
2, which shows the spatial distribution of the beam current density for a 10 keV, 100 A H
beam in a case without RMF.
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Fig. 1. The two injection geometries employed Fig. 2. Spatial distribution of the beam current
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Much higher efficiencies are obtained for almost perpendicular injection at some point along
the separatrix (ll). Fig. 3 shows the current drive efficiency as a function of the impact

parameterlf) for a 10 keV H beam injected at the midplane with various injection angles (

In this case the beam current is distributed almost uniformly along the FRC, as shown in Fig.
4, and similar efficiencies are obtained for injection at different axial positions due to the very
racetrack shape of the equilibria employed.
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Fig. 3. Efficiency vs. injection angle Fig. 4. Spatial distribution of beam current
for a 10 keV H beam injected at the density for injection at;z0.75 m with
midplane, without RMF =90 and b=0.215 m.

When a RMF, characterized by its amplitu@g)( frequency ) and penetration rangeé)(is
included the efficiency decreases. Fig 5 shows the efficiency as a function of the RMF
amplitude (5a), penetration range (5b) and frequency (5c). At a fixed frequency of 1 Mrad/s the
efficiency decreases monotonically with the amplitude and penetration of the RMF. The
dependence upon frequency is more complicated and a sharp reduction isssdeMedd/s.
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Fig. 5a. Efficiency vs. amplitude of the RMF  Fig. 5b. Efficiency vs. penetration of the RMF

The resonance occurs when the frequency of the RMF is close to the frequency of rotation of
the beam ions around the FRC axis. Present
experiments operate with~1 Mrad/s,5/rs~0.1 e
and B,~5 mT. With these parameters the [ without RME
resonance will not be a problem and a 100 A
beam could provide about one-fourth of the§
total current. Since the angular momentum;
deposited by the beam will be of the sam@

order as the RMF deposited torque the ol B, =75 mT
simultaneous use of both methods appearSMO T REETRRTa A
very attractive. o (Mrad/s)

Fig. 5c. Efficiency vs. frequency of the RMF
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2. Current Drive with Oscillating Helical Fields in RFPs

Rotating Manetic Fields (RMF) are effective to sustain the current in FRCs, which have no
toroidal field [3]. When both poloidal and toroidal currents are needed a natural extension of the
RMF method is the double helix scheme, where two sets of helical coils are employed. Bertram
[4] studied numerically the double-helix scheme using a simple plasma model: fixed ions, a
linearized Ohm’s law for electrons, uniform density and no temperature effects. After
examining in detail two representative cases, weakly and strongly resistive plasmas, he
concluded that strong toroidal fields do result in drastic reductions in the amount of current that
can be driven and consequently the method would not be suitable for large tokamaks. The
weakly resistive limit was recently reconsidered in a semi analytic calculation [5] which showed
the possibility of efficient current drive for screw and reversed field pinches (RFP). Owing to
the limitations of the linearization procedure employed in Refs [4] and [5], where in general
only first harmonics are retained, it is of interest to develop a full numerical calculation that
properly accounts for the non linear terms in Ohm’s law.

Here we use a non-linear Ohm's law to study current drive by a double helix traveling magnetic
field. An infinite plasma column of radiws subject to the action of external magnetic fields

varying like expi @ +kz—wt) and a uniform static external longitudinal magnetic fiBld is

considered. The ions are assumed to be fixed and electron inertia, thermal effects and density
gradients are neglected. With these approximations Ohm’s can be written as:

j:—em:%(E—jXBj (1)

en

wheren =mv/e?n andn, m, - u and v are the electronic density, mass, charge, velocity and

collision frequency respectively. The density and collision frequency are assumed to be uniform
and the displacement current is neglected in Ampere’s law.

Normalizing the radial coordinate and the wave vector with the plasma radie, (=ka)
the analysis is simplified by introducing non-dimensional helical coordingtas x,= 6 +kz
and x3 ignorable, with unit vector§;=é, &, =(& +hx&,)/d and & =(&,-hx&)/d, where

d=(1+h?x?)"2. A generic vector can be expressedGsC; & + (C, &+ Cs &)/d with
C,=C4+hxC, andC3=C -hxCy quasi-helical components [5]. In addition, the time, magnetic
field, vector potential and current density are normalized as follows:
B A . i
r=awt, P=—, a= . i=ppa—— (2)
B(O aB(O Ba)
whereB, is the amplitude of the traveling magnetic field, in the absence of plasma, at the

column center. Using Faraday'’s law to express the electric field in terenEap{1) becomes:
2
i:—Zﬂza—u—yixﬁ, where ﬂzzaﬂ—ow, y:B—“’ 3)
or 2n enn

From Eg. (3) we obtain two coupled equations for the evolution of the third quasi-components
of a andf (since only a3 and f; appear we omit the sub-index 3 from now on):

da _ 1 [A®a+ 2h j+ ¥ l(%@_&_%@_&j @)

or ﬁ 1+ h?x? 2},2; OXg OX  OX OXp
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Eqgs. (4) and (5) were solved with a 2 %) finite differences code with a fourth order
Runge-Kutta scheme for the time integration. It was assumed that the current density vanishes
outside the plasma and the external coils are located sufficiently far from the column in order
to use simple analytical expressions for their contribution. The coil current was switched on
smoothly in less than one period. The code was checked by recovering the steady state results
obtained by Bertram in the very resistive limit€ 4and y = 3.55.

With the model of Refs. [4] and [5], it is not possible to show good penetration when the ratio
v/\? (which measures the efficiency of the scheme in terms of applied oscillating field and
maximum amount of diamagnetism or paramagnetism of the longitudinal magnetic field) is
less than unity. We are using the non-linear code to better assess the actual limits of the
method in terms of/A% So far we have been able to explore the efficiency up to values of
7=20 andA=12 which corresponds #d 1> =0.14 (smaller than in the very resistive limit
examined by Bertram) finding good penetration and efficiency when the scheme is applied to
RFPs or screw pinches (always when diamagnetism is produced).

We show, in Fig. @ plot of the azimuthall {= dex< l, >) and axial = Zﬂjoldxx< L >)

currents as a function of time fer=20, 1 =12,h=1 andBg=1. It is clear that after a transient
phase a steady state with significant currents is reached. Since chlangisgossible to
obtain different ratios of, /1, this method could also be used in conjunction with other
current drive methods to obtain the desired current profiles.
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Fig. 6. Current vs time fof=12 andj)=20 Fig. 7. Magnetic field profiles fot=12 and =20

Fig. 7 shows the steady state radial profileBpfandB, for the same parameters as in Fig. 6.
The parabolic shape of thB, profile indicates that the oscillating fields have deeply
penetrated into the plasma and the electrons rotate almost rigidly, with frequeimcyhe
azimuthal direction. Work is in progress to better reproduce the experimental profiles and run
the code at higher values dfandy.
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3. Current Drive with two Rotating Magnetic Fields in FRCs

When a single RMF is employed to sustain the current in FCRs, ion spin-up due to electron-ion
collisions reduces the current [6]. Clemente [7] proposed using two magnetic fields rotating in
opposite senses. Using a two fluid model with finite electron inertia and no viscosity he showed
the existence of steady-state solutions where both species rotate as rigid rotors and the torques
deposited on electrons and ions, averaged over the azimuthal angle and the period of the
oscillating fields, are equal and opposite and balance the torque due to electron-ion collisions.

To further investigate this scheme we calculated analytically the time dependent torques
deposited on both species using the same assumptions as in Ref. [7]. The following
dimensionless parameters are introduced (variables and parameters not defined in this section
have the same meaning as those defined in Sec. 2):

14 eB, azyonoe2 + + m
=—, Co=—, Cg=—"7"—"7—, Ss =wet - =—\-w 1
@ ) 2 Me® 3 Me etl S ( i )

where . and @ are the rotation frequencies of electrons and ions. The angular and time
dependence is expanded &xx,6,7) =(Q~(x)€'® ) + Q*(x)€'®*?)) 1+ cc.. The two RMFs,
are introduced by specifying the z component of the vector potential far from the plasma:

@y (Xe,0,7) =% (€077 1 a*t @+ L cc. (6)

wherea’ is the ratio of the amplitudes of the two RMFs ageb1. When $ << 1 and $<<
1, the torque on the electrons can be written as the sum of a constant part plus a time
dependent term:

(tte) = ((e)) + ;0203[1+ %j Im{—1+ SIS —i(sg . S+2lsgj/clja+|x|2e2ir} -

where, (ug)=1/ (zﬂ)jdeye and({ue)) ~ %02c3(1+ me/rn)[se|x| J is the value calculated in

Ref. [7]. A similar expreSS|on is obtained for the ions. Whel the oscillatory term can be
larger than the constant part.

To study the effect of viscosity and the oscillations in the torque and we developed a time
dependent, two fluid code with finite electron mass. Neglectipg and introducing
dimensionless variables we obtained the following set of equations:

_ <u '9>6az

gi, ¢ <Ue,ig > OUgj,
2 Me,i X 26

__Go\ele) ey o Oay
or ¢ x a0 >elgg

—C1 Peji (ue i, ~Uei, )4‘77e,iAue,iZ

<8uei > da Ueji, 8
, 0 ei, oa
aT& :CSpe,i<¥>+02pe,i « 892 Clpel«uele ue|9 )+773| ue|0 (8)
VZA:ue—ui
where,
_ _ _ _ 2
::qunOa\h o= 0.73 |my. — ., ni:Lz’ sza_2+li_i21 Pe =1, pi:—%
Bo 096 Mg ngma“w 15).4 XOX x m

We note that if we leave, ¢, andc; fixed and changen/m what we are actually doing is to
change the ion mass. At1 we require that the viscous stresses vanish and the external axial
magnetic field be consistent with the assumed plasma current. The axial component of the
vector potential is specified atx. as indicated in Eq. (6). The initial condition considered
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has electrons and ions rigidly rotating in opposite senses. We do not investigate here how this
state can be reached. One possibility would be to use a single magnetic field to accelerate the
electrons and neutral beams for the ions.

We show, in Fig. 8 the radial profile of the azimuthal electron velocity at different times for
ci=1, ¢; =100, =2, m/m=100, 7 =0.01 and a’=1 (equal amplitude of both fields). The

initial rigid rotation disappears because the torque on the electrons has large oscillations (see
Eq. (7)) and neither field is able to entrain them. In Fig. 9 we shown the azimuthal ion
velocity atx=0.95 for different values af’ and the same parameters as in Fig. 8. Wiie0

there is only one rotating field and the ions accelerate due to collisions with the electrons. For
a’ = 0.1 the torque on the ions is not enough to compensate the collisions with the electrons
and they accelerate as in the case waitt0. Whena' =0.3 a stationary state is reached with

both species rotating in opposite senses.
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Fig. 8. Radial profile of <> Fig 9. Time evolution of sprat x=0.95

In Fig. 10 we show the azimuthal ion velocity as a function of time for different values of the
viscosity,a’=0.3 and the other parameters as in Fig.8. It is clear that the viscosity value is
critical. If it is too small ¢; =0.001),the oscillations in the torque destroy the synchronisin.

is too high ¢;=0.1) y is too small and the torque is not enough to compensate the collisions.
Preliminary results obtained with larger mass ratios show that the method can work for realistic
values of fime. In Fig. 11 we show a case wih=0.3, nyme=1000 anct;=10,¢,=100Q ¢;=20

and 7 =0.0075 where a steady-state is also reached. In summary, we have shown that reducing
the amplitude of one of the RMF it is possible to maintain stationary solutions with ions and
electrons rotating in opposite senses.
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Fig. 10. Time evolution of sgrat x=0.95 Fig. 11. Time evolution of sgrand <ueg>at x=0.95

4. Minimum Dissipation States in Plasmas Sustained by Helicity Injection

Analytical solutions for the minimum dissipation states of a flux core spheromak sustained by
helicity injection through magnetized electrodes are presented. The configuration considered
is shown in Fig. 12. The flux conserver is covered on the inside with a dielectric and voltages
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+V/2 are applied to the electrodes. Helicity balanK'@]j(z Kgis) [8], V:-B=0 and Ampere’s
law are the constraints employed in the minimization. We Introduce the following functional,

W =[7j? a3 -4 [7]-Bd%+ [® B-dS|-[yV-Bd3 +[C-(ugj—VxB)d>  (9)
Ho electrodes

wheren is the plasma resistivity (assumed uniforim)y andC are Lagrange multipliers and

@ is the voltage applied on the electrodes. Setting the first variatigvhexfual to zero we

obtain the following Euler-Lagrange equation for the current density [9]:

Vxj-Aj+20vy =0 (10)
2n

From V-j=0 we obtaianyzo. Thenatural boundary conditions, obtained by requesting that
the surface term i®W vanish, arejy=(1/2)By on the entire vessel angA1d/y on the
electrodes. In addition, we request that the normal componegnémdB vanish ar=a.

In the equation fop, @ should be set equal to the potential at the electraflgk)= FV/2
However, in defining the potential at the electrodes, we face a delicate problem due to the
limitations of the MHD model to describe the potential fall occurring near an electrode. The
details of the problem will be discussed elsewhere. Here
we only mention that it is necessary to consider a
different valueVo<V of the potential in order to obtain
realistic values for the external curréptWe will show

later howV, can be determined from the desired value of

I.. A possible option to improve the model is to consider a
very high resistivity next to the electrodes but this
complicates considerably the analytic treatment.

In what follows we employ dimensionless variabiea:
-1, Mla— A, B/Bext— B, juoad/Bexi— j, moay/(noBex) —
Fig. 12. Configuration considered Y, T]/T]O -, VHO/BextT]O -V, Lla-L, whereBey is the
magnitude of the external field ando a typical
resistivity value inrQm. The general solution of Eq. (10) foandB can be written as:
=&+ Vy Bz%//1+,u|V><(77f+f(r)2)+V;( (11)
whereu=uy/2nA and:

%ZVX(I//?)-I—%VXVX(!//Z), V2;5=0 sz/+/12g//=0

4 r I
The functionsy andf(r) are defined as [10f.= [y(r,z)dz, f(r)= —jdrzi jzrlyz(rl,—L) dn

L 0 20
wherey,=d,y. The problem is then reduced to finding the solutiong ferandy. Note thaty
contributes to the magnetic field with the irrotational temgn which represents the external
magnetic field. The boundary conditions employed Byét,z)=0, |;(1,2)=0, j(1,2=(1/2)Bs,
vy(r,xL).n=1, Ar,zL)=FAVy/2 and j«r,xL)=(A/2)By(r,£L). The solution with azimuthal
symmetry can be written as:

w =P Jo(Ar) + X.2A coshli2) Jo(kir),  7=Coz,  y=2 (12)

wherek is the I" positive zero ofly and k;? = 4% + k?. The constants; andC, can be written
in terms of the system parameters.
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Calculating the total current through the electrodes it is possible to show that due to the natural
boundary conditions employéd,=I,7L/z. With this equation we determine the value\if
givenl, nandL. The value ofs is determined from the helicity balance condition, where the
actual value of the potential at the electrodes is employed. For given values of the external
parameters two spheromak-type solutions, with different valueésesist. The one with the
lowest valueX 1) has the open flux on the inside while in the one with the largest vajusas

the flux wrapped around the spheromak [8].

The parameters employed in the calculation are similar to those proposed for the Proto-
SPHERA experiment [115=0.33 m,L=1.3a, Be=0.1 T,1,=6x10* A andV=50 V. In Fig. 13
we showl 1, A, and the total toroidal current for both solutions as functioms Bfg. 14 shows
flux contours for both solutions witi10°. We have also calculated non axisymmetris)
solutions which do not contribute kpand the total flux through the electrodes. These solutions
havej,(1,2).n=0, B1(1,2).n =0 and are given by [9]:

w1 =J1(ar)cos@z+0), y1=-sliar)sin(@z+8), x1=0 (13)
where g and s are determined by the boundary conditionsral and q?=4>-g°.
Preliminary calculations show lower dissipation rates with the mixed state in the parameter
regime corresponding to spheromak formation. This could indicate that the non axisymmetric
state, which is needed to sustain the spheromak, is the preferred one in driven scenarios.
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