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Recent advances on theoretical studies of various non inductive current drive methods (neutral beam injection,
oscillating magnetic fields and helicity injection) which apply to compact toroids and RFPs are presented.

1. Neutral Beam Injection into Field Reversed Configurations Sustained by Rotating
Magnetic Fields

The Monte Carlo Code already used to study neutral beam injection (NBI) into high flux field
reversed configurations (FRC) [1] was employed to study tangential neutral beam injection
(TNBI) into moderate flux FRCs sustained by rotating magnetic fields (RMF) [2]. The main
goal of this study was to determine the minimum increases in experimental parameters, and the
corresponding optimal beam parameters, necessary for efficient beam coupling. Considering
FRCs with the same size as those produced in the Translation, Confinement and Sustainment
(TCS) experiment [3], four different equilibria were analyzed. Most of the results presented
below were obtained using a somewhat higher magnetic field and temperature than can be
obtained in present experiments (Bext=75 mT, Te,i=140 eV, ne=5�1019 m-3, rs=0.3 m, rc=0.37 m,
Ls=2m, �s= rs/rc=0.8). Two injection geometries, shown in Fig. 1, were considered. In one case
the beam was injected through the ends (I), at a small angle (�) to the FRC axis while in the
other (II) the beam was injected almost perpendicular, at some point along the separatrix.

The results obtained without including the RMF show that even at the lowest practical
energies (10 keV), trapping D beams is very difficult due to the low magnetic flux and high �s

value, typical of RMF sustained FRCs. Hydrogen beams were therefore employed in all the
calculations. In injection through the ends the beam current is concentrated in the mirror
region and very low current drive efficiencies and deposited power result. This is seen in Fig.
2, which shows the spatial distribution of the beam current density for a 10 keV, 100 A H
beam in a case without RMF.

Fig. 1. The two injection geometries  employed Fig. 2. Spatial distribution of the beam current
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Much higher efficiencies are obtained for almost perpendicular injection at some point along
the separatrix (II). Fig. 3 shows the current drive efficiency as a function of the impact
parameter (b) for a 10 keV H beam injected at the midplane with various injection angles (�).
In this case the beam current is distributed almost uniformly along the FRC, as shown in Fig.
4, and similar efficiencies are obtained for injection at different axial positions due to the very
racetrack shape of the equilibria employed.

When a RMF, characterized by its amplitude (B�), frequency (�) and penetration range (�) is
included the efficiency decreases. Fig 5 shows the efficiency as a function of the RMF
amplitude (5a), penetration range (5b) and frequency (5c). At a fixed frequency of 1 Mrad/s the
efficiency decreases monotonically with the amplitude and penetration of the RMF. The
dependence upon frequency is more complicated and a sharp reduction is seen at ��5 Mrad/s.

The resonance occurs when the frequency of the RMF is close to the frequency of rotation of
the beam ions around the FRC axis. Present
experiments operate with ��1 Mrad/s, �/rs�0.1
and B��5 mT. With these parameters the
resonance will  not be a problem and a 100 A
beam could provide about one-fourth of the
total current. Since the angular momentum
deposited by the beam will be of the same
order as the RMF deposited torque the
simultaneous use of both methods appears
very attractive.
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Fig. 3. Efficiency vs. injection angle
for a 10 keV H beam injected at the
midplane, without RMF
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Fig. 5c. Efficiency vs. frequency of the RMF.

Fig. 4. Spatial distribution of beam current
density for injection at zi=0.75 m with
�=90 and b=0.215 m.

Fig. 5a. Efficiency vs. amplitude of the RMF. Fig. 5b. Efficiency vs. penetration of the RMF.
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2. Current Drive with Oscillating Helical Fields in RFPs

Rotating Manetic Fields (RMF) are effective to sustain the current in FRCs, which have no
toroidal field [3]. When both poloidal and toroidal currents are needed a natural extension of the
RMF method is the double helix scheme, where two sets of helical coils are employed. Bertram
[4] studied numerically the double-helix scheme using a simple plasma model: fixed ions, a
linearized Ohm’s law for electrons, uniform density and no temperature effects. After
examining in detail two representative cases, weakly and strongly resistive plasmas, he
concluded that strong toroidal fields do result in drastic reductions in the amount of current that
can be driven and consequently the method would not be suitable for large tokamaks. The
weakly resistive limit was recently reconsidered in a semi analytic calculation [5] which showed
the possibility of efficient current drive for screw and reversed field pinches (RFP). Owing to
the limitations of the linearization procedure employed in Refs [4] and [5], where in general
only first harmonics are retained, it is of interest to develop a full numerical calculation that
properly accounts for the non linear terms in Ohm’s law.

Here we use a non-linear Ohm's law to study current drive by a double helix traveling magnetic
field. An infinite plasma column of radius a, subject to the action of external magnetic fields
varying like exp ( )i kz t� �� �  and a uniform static external longitudinal magnetic field 0B , is

considered. The ions are assumed to be fixed and electron inertia, thermal effects and density
gradients are neglected. With these approximations Ohm’s can be written as:
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where nem 2/�� �  and n, m, -e, u and � are the electronic density, mass, charge, velocity and
collision frequency respectively. The density and collision frequency are assumed to be uniform
and the displacement current is neglected in Ampere’s law.

Normalizing the radial coordinate and the wave vector with the plasma radius (x=r/a, h=ka)
the analysis is simplified by introducing non-dimensional helical coordinates x1=x, x2=� +kz
and x3 ignorable, with unit vectors ê1=êr, � � dehxee z /ˆˆˆ2 ��

�
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�� , where

2
1

)1( 22xhd �� . A generic vector can be expressed as C=C1 êr + (C2 ê2+ C3 ê3)/d with
C2=C�+hxCz and C3=Cz-hxC�   quasi-helical components [5]. In addition, the time, magnetic
field, vector potential and current density are normalized as follows:
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where B� is the amplitude of the traveling magnetic field, in the absence of plasma, at the
column center. Using Faraday’s law to express the electric field in terms of � Eq.(1) becomes:
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From Eq. (3) we obtain two coupled equations for the evolution of the third quasi-components
of � and � � �������	
���	�3 and �3 appear we omit the sub-index 3 from now on):
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Eqs. (4) and (5) were solved with a 2D (x, x2) finite differences code with a fourth order
Runge-Kutta scheme for the time integration. It was assumed that the current density vanishes
outside the plasma and the external coils are located sufficiently far from the column in order
to use simple analytical expressions for their contribution. The coil current was switched on
smoothly in less than one period. The code was checked by recovering the steady state results
obtained by Bertram in the very resistive limit ( 4� � and 3.55� � ).

With the model of Refs. [4] and [5], it is not possible to show good penetration when the ratio
�/�2 (which measures the efficiency of the scheme in terms of applied oscillating field and
maximum amount of diamagnetism or paramagnetism of the longitudinal magnetic field) is
less than unity. We are using the non-linear code to better assess the actual limits of the
method in terms of �/�2. So far we have been able to explore the efficiency up to values of
�=20 and 	=12 which corresponds to 2/� 	 � 0.14 (smaller than in the very resistive limit
examined by Bertram) finding good penetration and efficiency when the scheme is applied to
RFPs  or screw pinches (always when diamagnetism is produced).

We show, in Fig. 6 a plot of the azimuthal (I�
1

0
dx i

�
� � 	
 ) and axial (Iz=

1

0
2 zdxx i
 � 	
 )

currents as a function of time for � =20, 	 =12, h=1 and B0=1. It is clear that after a transient
phase a  steady state  with  significant  currents  is reached.  Since changing  h  it is possible to
obtain different ratios of Iz /I�  this method could also be used in conjunction with other
current drive methods to obtain the desired current profiles.

Fig. 7 shows the steady state radial profiles of  B� and Bz for the same parameters as in Fig. 6.
The parabolic shape of the Bz profile indicates that the oscillating fields have deeply
penetrated into the plasma and the electrons rotate almost rigidly, with frequency �� in the
azimuthal direction. Work is in progress to better reproduce the experimental profiles and run
the code at higher values of � and �.
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3. Current Drive with two Rotating Magnetic Fields in FRCs

When a single RMF is employed to sustain the current in FCRs, ion spin-up due to electron-ion
collisions reduces the current [6]. Clemente [7] proposed using two magnetic fields rotating in
opposite senses. Using a two fluid model with finite electron inertia and no viscosity he showed
the existence of steady-state solutions where both species rotate as rigid rotors and the torques
deposited on electrons and ions, averaged over the azimuthal angle and the period of the
oscillating fields, are equal and opposite and balance the torque due to electron-ion collisions.

To further investigate this scheme we calculated analytically the time dependent torques
deposited on both species using the same assumptions as in Ref. [7]. The following
dimensionless parameters are introduced (variables and parameters not defined in this section
have the same meaning as those defined in Sec. 2):

where �e and �i are the rotation frequencies of electrons and ions. The angular and time

dependence is expanded as: ..))()((),,( )()( ccexQexQxQ ii
���

���� ����
�� . The two RMFs,

are introduced by specifying the z component of the vector potential far from the plasma:

..)(),,( )()( cceaexx ii
ccz ���

��� ����
��	                                           (6)

where a+ is the ratio of the amplitudes of the two RMFs and xc>>1. When Si
+ << 1 and Se

- <<
1, the torque on the electrons can be written as the sum of a constant part plus a time
dependent term:
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Ref. [7]. A similar expression is obtained for the ions. When a+
�1 the oscillatory term can be

larger than the constant part.

To study the effect of viscosity and the oscillations in the torque and we developed a time
dependent, two fluid code with finite electron mass. Neglecting ur, and introducing
dimensionless variables we obtained the following set of equations:
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We note that if we leave c1, c2 and c3 fixed and change me/mi what we are actually doing is to
change the ion mass. At x=1 we require that the viscous stresses vanish and the external axial
magnetic field be consistent with the assumed plasma current. The axial component of the
vector potential is specified at x=xc as indicated in Eq. (6). The initial condition considered
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has electrons and ions rigidly rotating in opposite senses. We do not investigate here how this
state can be reached. One possibility would be to use a single magnetic field to accelerate the
electrons and neutral beams for the ions.

We show, in Fig. 8 the radial profile of the azimuthal electron velocity at different times for
c1=1, c2 =100, c3=2, mi/me=100, i� =0.01 and  a+=1 (equal amplitude of both fields). The
initial rigid rotation disappears because the torque on the electrons has large oscillations (see
Eq. (7)) and neither field is able to entrain them. In Fig. 9 we shown the azimuthal ion
velocity at x=0.95 for different values of a+ and the same parameters as in Fig. 8. When a+=0
there is only one rotating field and the ions accelerate due to collisions with the electrons. For
a+ = 0.1 the torque on the ions is not enough to compensate the collisions with the electrons
and they accelerate as in the case with a+=0. When a+ =0.3 a stationary state is reached with
both species rotating in opposite senses.

In Fig. 10 we show the azimuthal ion velocity as a function of time for different values of the
viscosity, a+=0.3 and the other parameters as in Fig.8. It is clear that the viscosity value is
critical. If it is too small ( i� =0.001), the oscillations in the torque destroy the synchronism. If it
is too high ( i� =0.1) uz is too small and the torque is not enough to compensate the collisions.
Preliminary results obtained with larger mass ratios show that the method can work for realistic
values of mi/me. In Fig. 11 we show a case with a+=0.3, mi/me=1000 and c1=10, c2=1000, c3=20
and i� =0.0075 where a steady-state is also reached. In summary, we have shown that reducing
the amplitude of one of the RMF it is possible to maintain stationary solutions with ions and
electrons rotating in opposite senses.

4. Minimum Dissipation States in Plasmas Sustained by Helicity Injection

Analytical solutions for the minimum dissipation states of a flux core spheromak sustained by
helicity injection through magnetized electrodes are presented. The configuration considered
is shown in Fig. 12. The flux conserver is covered on the inside with a dielectric and voltages

Fig. 8. Radial profile of <ue�> Fig 9. Time evolution of <ui�>at x=0.95

Fig. 10. Time evolution of <ui�>at x=0.95 Fig. 11. Time evolution of <ui�>and <ue�>at x=0.95
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�V/2 are applied to the electrodes. Helicity balance ( disinj KK �� � ) [8], ��B=0 and Ampere’s

law are the constraints employed in the minimization. We Introduce the following functional,

� � rdrdd�rdrdW
electrodes
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where � is the plasma resistivity (assumed uniform), �, � and C are Lagrange multipliers and
� is the voltage applied on the electrodes. Setting the first variation of W equal to zero we
obtain the following Euler-Lagrange equation for the current density [9]:

0
2

0 ���
�� �
	

�
� jj (10)

From ��j=0 we obtain �
2
�=0. The natural boundary conditions, obtained by requesting that

the surface term in �W vanish, are j�=(	/2)B� on the entire vessel and �=	�/
0 on the
electrodes. In addition, we request that the normal components of j  and B vanish at r=a.

In the equation for �, � should be set equal to the potential at the electrodes, �(±L)=  �V/2.
However, in defining the potential at the electrodes, we face a delicate problem due to the
limitations of the MHD model to describe the potential fall occurring near an electrode. The

details of the problem will be discussed elsewhere. Here
we only mention that it is necessary to consider a
different value V0<V of the potential in order to obtain
realistic values for the external current Iz. We will show
later how V0 can be determined from the desired value of
Iz. A possible option to improve the model is to consider a
very high resistivity next to the electrodes but this
complicates considerably the analytic treatment.

In what follows we employ dimensionless variables: r/a
� r, 	/a � 	, B/Bext � B,  j�0a/Bext � j ,  �0a�/(�0Bext) �
�,  �/�0 � �,  V�0/Bext�0 � V,  L/a�L, where Bext is the
magnitude of the external field and �0 a typical

resistivity value in 
m. The general solution of Eq. (10) for j  and B can be written as:
� � 
����� ���������� zrfzll ˆ)(~~/�B�j (11)

where 
l=
0/2�	 and:

00),ˆ(
1

)ˆ( 222 ������������� ���
�
�

� zz�
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where �z=�z�. The problem is then reduced to finding the solutions for �, � and �. Note that �
contributes to the magnetic field with the irrotational term ��  which represents the external
magnetic field. The boundary conditions employed are: Br(1,z)=0, jr(1,z)=0, j�(1,z)=(�/2)B�,
���r,�L).n=1, ��r,�L)= �	V0/2 and j�(r,�L)=(�/2)B�(r,�L). The solution with azimuthal
symmetry can be written as:

zzCrkJzkArJA iii ���� � 
��� ,),()cosh(2)( 0
'

000 (12)

where '
ik is the ith positive zero of J0 and 222'

ii kk �� � . The constants Ai and C0 can be written
in terms of the system parameters.

Fig. 12. Configuration considered
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Calculating the total current through the electrodes it is possible to show that due to the natural
boundary conditions employed V0=Iz�L/
. With this equation we determine the value of V0

given Iz, ��and�L. The value of � is determined from the helicity balance condition, where the
actual value of the potential at the electrodes is employed. For given values of the external
parameters two spheromak-type solutions, with different values of � exist. The one with the
lowest value (� 1) has the open flux on the inside while in the one with the largest value (�2) has
the flux wrapped around the spheromak [8].

The parameters employed in the calculation are similar to those proposed for the Proto-
SPHERA experiment [11], a=0.33 m, L=1.3 a, Bext=0.1 T, Iz=6�104 A and V=50 V. In Fig. 13
we show � 1, �2 and the total toroidal current for both solutions as functions of �. Fig. 14 shows
flux contours  for both solutions with �=10-5.  We have also calculated non axisymmetric (m=1)
solutions which do not contribute to Iz and the total flux through the electrodes. These solutions
have j1(1,z)	n=0, B1(1,z)	n =0 and are given by [9]:

0),sin()(),'cos()( 11111 ������ 
���� qzqrIszqqrJ (13)

where q and s are determined by the boundary conditions at r=1 and 222' qq �� � .
Preliminary calculations show lower dissipation rates with the mixed state in the parameter
regime corresponding to spheromak formation. This could indicate that the non axisymmetric
state, which is needed to sustain the spheromak, is the preferred one in driven scenarios.
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Fig. 13. � and toroidal current vs. resistivity
Fig. 14 Flux contours for both type of solutions


