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Abstract. Toroidal and poloidal rotations of a collisional tokamak edge plasma with steep temperature and 
density gradients are investigated via the fluid equations. Stability of the solutions over time and space 
coordinates is considered. In the stationary case, trajectory bifurcations in phase space of toroidal and poloidal 
speeds are discussed.  
 
1. Introduction  
 
The onset of rotation, or spinning-up of plasma in toroidal and/or poloidal directions, and the 
concomitant rise of a radial electric field are among the most common phenomena in toroidal 
plasmas observed during the L-H transition. The basic assumption in explaining these facts is 
that the shear created by the plasma rotation may serve to suppress the micro turbulences and 
thus lead to the reduction of radial transport and to the enhancement of confinement. It is, 
therefore, important to explain the rotation in tokamak plasmas, as one of the major problems 
(see, for example, Refs. [1, 2]). At the high collisionality regime of the toroidal edge plasma 
with steep thermal and density gradients poloidal and toroidal rotations were investigated in 
Refs.[3-5] by using the modified stress tensor due to Mikhailowskii and Tsypin [6]. It was 
pointed out in Ref.[4] that, when parameter ( ) )rL/Rq(/ 22

ii1 ψΩν≡Λ  is larger than 1/3, then 

the parallel momentum equation, which is one of the basic equations for determining plasma 
rotation, needs modification. Here, νi is the ion collision frequency, Ωi the ion Larmor 
frequency, q the safety factor, Lψ is the scale length of radial gradients, r and R are the minor 
and major radii, respectively. In order to investigate the rotation phenomena in this study we 
use modified fluid equations for collision dominated toroidal plasma with circular cross 
section, large aspect ratio and steep gradients near the tokamak edge including some mass and 
momentum sources [3-5]. In these equations rotation velocities are expanded in a small 
parameter µ∼0.1, which was defined in the modified neoclassical theory [3-5] as the ratio    
µ∼ Bθ/Bϕ ∼ Lψ/r ∼ r/(qR)~ci/(qRνi) , where ci is the ion thermal speed, and Bθ and Bϕ are the 
poloidal and toroidal magnetic fields, respectively; [3]. By assuming this ordering scheme, the 
toroidal momentum equation was found as [5, 7] 
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A toroidal momentum source is also included in the toroidal momentum balance 
(ambipolarity constraint) equation above, where ϑ+= cos)R/r(1h 0 , and Jr is a possible radial 

polarization current. The classical perpendicular viscosity coefficient is denoted by 
2
iiiii,2 /TN2.1 Ων=η . 

 
An equation for the poloidal velocity in a collisional plasma edge with steep thermal gradient 
from the parallel momentum balance equation was also derived in Ref. [4], where the term 
involving the time derivative of the poloidal velocity was dropped as this term was multiplied 
by a small factor. Hence, in that derivation the time evolution of the poloidal velocity was 
strongly synchronized with that of the toroidal velocity. However, the presence of time 
derivatives with factors of different orders is indicative of the toroidal and poloidal velocities 
having different damping times. Indeed, in Ref. [8] poloidal and toroidal damping times were 
also calculated to be of the following orders  
 

TTicx
2

iP ])/(,)r/a([O τ<<τνν<τ . 

 
After a flux surface averaging of the term including the time derivative of the poloidal 
velocity, the parallel momentum equation reads as follows [9]: 
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where 1

i
2
iiii, B]r/TNln)e/T(5.2UB4[Q −

θϕ ∂∂−= , and )Rq/(Nr2S 221
ii||,
−χ= , parallel heat 

diffusion coefficient is iiii||, m/P9.3 ν=χ . The first term on the right which is proportional to 

Uθ describes damping or growth of the poloidal velocity depending on its sign. A similar 
homogeneous term was derived in Ref. [10, 11] and identified as the likely cause of the 
subsonic Stringer spin-up. However, the inhomogeneous term due to a momentum source is 
seen to be a direct drive for the poloidal flow.  
 
2. Two-time-scale analysis 
 
If the equations are normalized by the toroidal damping time τT, a small number ε̂ =O(µ2) will 
appear as a factor of the time derivative on the l.h.s. of Eq.(2). This small factor can be used to 
define a new fast time variable by τ=t/ ε̂ , which is characteristic for the poloidal relaxation. 
Now, the term including the time derivative w.r.t. this new variable will become of zeroth 
order and its effect on the transient evolution of poloidal velocity in the short time scale will 
become evident. We note that, this term, also called the Pfirsch-Schlüter factor, which 
expresses an increase of inertia, depends on the collisionality and is altered in the plateau 
regime [12]. Enhancement of the poloidal inertia arises from our basic assumptions used in 
the calculations, such as the incompressibility of flow and the zero radial velocity at the order 
considered [8, 9, 13]. 
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The poloidal, Uθ, and toroidal, Uϕ, speeds in the modified toroidal and parallel momentum 
equations, Eq.(1) and Eq.(2), can be normalized by µ2ci, and by µci, respectively. Assuming 
the following two time scale expansions for these velocities [14] 
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θθ
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we obtain the following set of equations 
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and substituting Eq.(3) in Eq.(4) we find  
 

 0
U )0(

=
τ∂

∂ ϕ . (6) 

 
In other words, the zero order toroidal velocity, )0(Uϕ , can only depend on ξ, and the slow time 

variable t, and therefore it will not change in the fast time scale, τ [9]. We use this result and, 
similarly substitute Eq.(3) in Eq.(5) to find an equation for )t,,(U )0( τξθ  by expanding the r.h.s. 

of Eq.(5) 
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where ξ, )t,(U )0( ξϕ ,  ξ∂ξ∂ ϕ /)t,(U )0(  can be considered as mere parameters for the fast time 

variation of the poloidal velocity [9]. A solution of Eq.(7) for τ in terms of )0(Uθ  can be given 

as 
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Here K, L, α, β, γ, and δ are functions of the parameters ξ, )t,(U )0( ξϕ ,  ξ∂ξ∂ ϕ /)t,(U )0( . g2 and 

f3 are the second and third degree polynomials of )0(UX θ≡ . Evaluating this simple integral for 

three real roots for f3(X) we find an implicit function of the zero order poloidal velocity )0(Uθ  

in the following form 
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where a, b, c are three real zeros of f3, and coefficients )a(f/)a(gA 32 ′= , )b(f/)b(gB 32 ′=  and 

)c(f/)c(gC 32 ′=  are functions of the slow time t, since they are functions of )t,(U )0( ξϕ ,  

ξ∂ξ∂ ϕ /)t,(U )0( . Depending on the values of its coefficients, the polynomial f3 admits one real, 

say a, and two conjugate complex roots which we denote by b=bre ± ibim. Then the integral in 
Eq.(8) yields the following solution 
 

 

.
b

b)0(U
tan

b
bU

tanB2

b)b)0(U(

b)bU(
lnB

a)0(U
aU

lnA

im

re
)0(

1

im

re
)0(

1
im

2
im

2
re

)0(

2
im

2
re

)0(

re)0(

)0(

��
���� ���

�		
� −−
���

�		
� −−

+−
+−+

−
−=τ

θ−θ−

θ

θ

θ

θ

 (10) 

 
The implicit solution for )0(Uθ  given by either Eq.(9) or Eq.(10) determines the stability of the 

poloidal velocity in the short time scale, τ, by the local temperature and density distributions 
together with the initial toroidal velocity profile [9]. At a particular radial point, a topological 
criterion defined by these equations can be given to decide whether an initial poloidal velocity 
will relax to a finite value or it will spin-up in the short time scale. Clearly, the assumed 
subsonic flow conditions are not necessarily violated by such a growth of poloidal velocity. 
 
We can also find the slow time evolution of the zero order toroidal velocity, )t,(U )0( ξϕ . The 

first order terms the Eq.(4) have the following relation 
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We note that the requirement for a self-consistent solution for )t,,(U )1( τξϕ  leads to  
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where the symbol <<⋅⋅⋅>> denotes an averaging over the fast time scale, τ. Or writing 
explicitly, we find the slow time evolution of the toroidal velocity in the zeroth order 
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In Eq.(13), the averaged )t,,(U )0( τξθ  over τ, can be replaced by the limiting value )t,,(U )0( ∞ξθ  

that is obtained in the fast time scale.  
 
The parabolic equation for )t,(U )0( ξθ , Eq.(13), can be solved by numerical methods for 

arbitrary profiles of Ti(ξ), Ni(ξ), and a given initial velocity distribution along the infinite ξ-
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axis,  )()()0,(U )0( +∞<ξ<−∞ξΦ=ξϕ . Even for a zero initial velocity distribution along ξ, it 

is seen that )t,(U )0( ξϕ  can be driven in time by the inhomogeneous terms in Eq.(13) due to 

neutral beam injection etc. by overcoming the diminishing effect of the charge exchange 
collisions with neutrals on the toroidal velocity profile.  It is noted that, to the zero order, 

)t,(U )0( ξθ  is coupled only to the limiting values of the poloidal velocity which is calculated in 

the fast time scale [9].  
 
3. Study of equilibrium  
  
Now, we look for the equilibrium solutions of Eq.(7) and Eq.(13) for Uθ and Uϕ, using their 
lowest order equations in time independent forms. These equations can be written as   
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On the left hand side of Eq.(17) one could also include a term like i,ii mNm ϕ

�
 for the neutral 

beam injection, but this was dropped for simplicity. Substituting Eq.(16) in Eq.(17), and 
rearranging, we obtain a new nonlinear ordinary differential equation:  
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where the prime sign denotes the derivative w.r.t. ξ. After normalization at the separatrix,  the 
functions F and G can be obtained as  
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Here, ∆ denotes a term due to a possible radial current. For simplicity, in the calculations we 
shall consider the term K, representing charge exchange effects, as a constant. In Eq.(18) the 
individual terms indicating partial derivatives of F and G will not be given here as they are 
lengthy. To this system of two first order nonlinear ordinary differential equations, 
Eqs.(16,18), also an equation for the temperature variation along ξ must be added. This can be 
taken conveniently as a model equation: 
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 �  is a scale length for the temperature gradient, and Tc , Ts are values of temperature at the 
core and separatrix, respectively. Similarly, the density profile is assumed to be given by a 
relationship like N=T1/γ, where γ can be taken as a parameter, specifically γ=1.6 . Hence we 
obtain a set of autonomous first order differential equation system: 
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where M is a vector of control parameters (� , γ, Tc/Ts, K, m� , ∆,..). The particular model 
chosen for T in Eq.(20) allows us to write T′ and T ′′  also as functions of T. For example, 

( ) ( )[ ]TT/T1T/2T cs−µ−=′ , ( ) ( )[ ][ ]T)T/T(21TT/T1T/2T cscs
2 −−µ=′′ . 

 
4. Fixed points of the system 
 
The fixed points of the autonomous system Eq.(21) are defined by the vanishing of the vector 
field, fi(u;M)=0. The stability of the solutions u(ξ,M), where  u=(Uϕ , Uθ, T) depend on the 
values of the eigenvalues of the Jacobian matrix at the fixed points. At the fixed points, we 
must have T=0. Hence, we take the limit of f for this value and find:  
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At the fixed points of the system (21), T must vanish. Hence, at this limit Eqs.(21) can be 
considerably simplified: 

    F
ds

dU
=ϕ ,    F
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U

θ

ϕ−=θ       (27) 

From these equations we find the fixed points of the system (21), as a curve, and a “node-
saddle”  pair in the (Uϕ, Uθ, T0, M) plane. 
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5. Results 
 
In many cases while integrating the system of Eqs.(21), one observes chaotic oscillations of 
the solutions near the magnetic separatrix, as seen in Fig.1(a). This effect becomes more 
pronounced by the increasing steepness of the temperature gradient, i.e., for decreasing � . 
This observation is due to the bifurcations of the solutions near the fıxed points of the vector 
field fi  at the chosen parameter values. Study of the solutions near the fixed points in the 
phase space indicates the likelyhood of bifurcations near a saddle-node pair as seen on Figs 2 
(a,b). Integration of Eq.(27) for various initial value pairs (Uϕ(0) , Uθ(0)) is shown on Fig. 
2(a). Such a  picture in the phase space determines the stability behaviour of the solutions 
depending on the parameters describing steepness of gradients, composition, and the likely 
external disturbances on the system. In this figure we show that the chosen parameter values 
has led to a particular bifurcation in our problem, namely to the the formation of a chaotic ring 
system around the node. Among the external disturbances we mention that a weak periodic 
excitation of temperature over the radial coordinate would be a likely trigger for another 
homoclinic orbit bifurcation in our saddle-node system. Indeed, the stability of temperature 
profile itself is sensitive to many physical factors, as shown by Bachmann et al. in Refs.[16, 
17]. For example, in radiative edge plasmas, temperature bifurcations and chaos can be driven 
by a given time-modulated impurity density. In the light of that study, it is not unrealistic to 
assume a weak periodic temperature disturbance superimposed on the monotonous model 
profile Eq.(20). In that case, a further homoclinic bifurcation of the saddle-node-fixed-point 
system would be the outcome .  
 

 
   (a)      (b)  

 
Figure 1. Depending on the parameters velocities in the steady state can be chaotic (a), or not (b). 
 
Above, we have not considered the time dependent stability of the full partial differential 
system, Eqn.(7) and Eq.(13), in the slow-time scale. Due to the coupling of governing 
equations, however, transient Uθ becomes important in driving Uϕ as well. One can further 
look into the effects of random temporal and spatial perturbations in radial temperature and 
density profiles in above equations, as they are likely to exist in tokamaks. Perturbation of the 
regular profiles by such random components can, under specific circumstances, also lead to 
chaotic behavior of the rotation speeds, as above coupled equations would act like 
stochasticity amplifiers as well as stochasticity generators. 
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(a) 
 

(b) 

Figure 2. Bifurcations of homoclinic orbits obtained by numerical integration of Eqs.(27): (a) Orbits 
near the “saddle-node”  fixed points. (b) Blow-up of the same picture showing the details of chaotic 
tangles inside a ring system around the node.  
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