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Abstract Theories for the toroidal momentum confinement in tokamaks have been developed. It is shown that 
the logarithmic gradient of the toroidal flow is a linear combination of logarithmic gradients of the plasma 
pressure and the temperature in neoclassical quasilinear theory. The fluctuation-induced toroidal stress consists 
of a diffusion flux, a convective flux, and a residual flux. The effects of a variety of magneto-hydrodynamic 
(MHD) activity, such as magnetic islands, and un stable MHD modes, on toroidal plasma rotation are also 
addressed. The key mechanism for the toroidal flow damping is the broken toroidal symmetry in |B | that results 
from MHD activities. Here, B is the magnetic field. The symmetry -breaking-induced toroidal viscosity also 
provides a mechanism to determine the island rotation frequency. 
 
1. Introduction 
 

The importance of the plasma momentum confinement physics, and its effects on the 
particle and the energy confinement in tokamaks, is recognized in the theory for the L (low 
confinement mode) – H (high confinement mode) transition [1]. There, the poloidal 
momentum transport, usually determined fairly accurately by the neoclassical processes due 
to the variation of the magnitude of the magnetic field |B | on the equilibrium magnetic 
surface, seems to be the dominant mechanism in understanding the L-H transition 
phenomenon.  Here, we address the issues related to the toroidal momentum confinement in 
tokamaks. Besides the importance of the toroidal rotation on the plasma confinement, the 
new impetus to understand the toroidal momentum confinement iare the experimental 
observations that the toroidal plasma rotation stabilizes resistive wall modes, and allows high 
beta, long pulse operation [2].  It is known that the toroidal momentum confinement in 
tokamaks is anomalous, i.e. , the momentum confinement time is two orders of magnitude 
larger than the neoclassical values, in contrast to the poloidal momentum confinement [3-5]. 
The inferred toroidal momentum confinement time from the experiments is of the order of the 
ion energy confinement time. When a variety of magneto-hydrodynamic (MHD) activity is 
present, the equilibrium toroidal flow profiles evolve in response to these activities.  This 
provides an opportunity to probe the underlying physics mechanism when these MHD 
activities are present. Here, we present physical mechanisms that exist in realistic tokamak 
discharges, which can affect toroidal momentum confinement. 
 
2. Neoclassical Quasi-Linear Theory for Toroidal Stress 
 

Turbulent fluctuations are ubiquitous in tokamaks. These fluctuations degrade toroidal 
momentum confinement. Recent experiments in C-MOD indicate that besides a diffusion 
term [6-8] in the toroidal momentum equation there should be also a momentum pinch term 
(i.e. , a radially inward convective flux) in Ohmic discharges [9]. The existence of a 
convective flux in the toroidal momentum transport equation is known in neoclassical theory 
[10-12]. Its existence in the anomalous toroidal momentum flux is also experimentally 
inferred [13], and adopted theoretically [14]. A neoclassical quasilinear theory [15] that 
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accounts for the effects of the fluctuations on transport fluxes is extended to calculate the 
toroidal momentum transport flux. It is found, just like the neoclassical theory [12], besides 
the diffusive tflux, and a residual flux, there is a convective term in the fluctuation-induced 
toroidal stress [16]. The salient feature of the theory is that the ratio of the diffusion term to 
the convective term is not sensitive to the amplitude of the fluctuations and the 
renormalization procedure. It only depends on the frequency spectrum. It is shown that, in 
general, the logarithmic gradient of the toroidal flow U is a linear combination of the 
logarithmic gradients of the plasma pressure P and the temperature T when the fluctuation 
induced toroidal stress dominates. If the fluctuation frequency is close to the ion diamagnetic 

frequency, the toroidal momentum flux Γφ has the form [16]: 
 

  Γφ = - χ φ ∂(NMRU)/∂ψ - χ φ Lφ (NMRU) + Re,    (1) 
 

where χ φ is the anomalous momentum diffusion coefficient, N is plasma density, M is the ion 

mass, R is the major radius, Lφ ≈ - (5/2)(T ′/T), prime denotes ∂ /∂ψ, ψ is the poloidal flux 
function, and Re represents the residual term which is basically the spectrum average of the 
parallel wave vector. The equilibrium toroidal rotation is determined by balancing these three 
fluxes. This mechanism, similar to that in the neoclassical theory [10-12], is different from 
the earlier the ory advanced in Ref.[17] which  is based on the mechanism that the toroidal 
momentum is deposited in the edge region, and moves inward through the momentum pinch. 
In the theory developed in Ref.[16], the diffusion term and the convective term 
approximately  determine the toroidal rotation profile, and the Re term determines the 
magnitude and the direction of the equilibrium toroidal rotation. In this case, the equilibrium 

toroidal flow profile is related to the temperature profile through the relation U/U0 = 
(T/T0)

5/2, where U0 and T0 are values of U and T on the magnetic axis respectively, if we 
neglect the residual term. This particular functional relation between U , and T is observed in 
C-MOD, although the corresponding fluctuation frequency spectrum is not measured [18]. 
When the frequency spectrum differs from the ion diamagnetic frequency, the functional 
relation between U, P, and T will change accordingly, and the corresponding convective flux 
can be either radially inward, or outward, or vanish.  
 
3. Symmetry-Breaking -Induced Toroidal Viscosity due to MHD Acticity 
 

Besides the turbulent fluctuations, a variety of coherent MHD activity, such as 
magnetic islands, or resistive wall modes, also degrades toroidal momentum confinement. A 
magnetic island almost always exists in high temperature tokamak discharges. The magnetic 
perturbation due to the presence of the island is of the resonant type in the sense that m – nq  ≈ 
0. Here, m is the poloidal mode number, n is the toroidal mode number, and q is the safety 
factor. It is shown that because of the distortion of the magnetic surface due to the presence 
of a magnetic island, the |B| on the distorted island magnetic surface is not toroidally 
symmetric [19]. This leads to an enhanced (over toroidally symmetric tokamaks) toroidal 
momentum loss that results from the symmetry-breaking-induced toroidal viscosity. Because 
the magnitude of the symmetry-breaking-induced toroidal viscosity usually increases with 
plasma temperature, the corresponding magnitude of the ion heat conductivity in the vicinity 
of the islands can become much larger than the standard neoclassical ion heat conductivity, 
and become comparable to the anomalous ion heat conductivity for the typical size of the 
islands observed in experiments. Thus, the toroidal momentum confinement can be 
influenced by magnetic islands. It is also interesting to note that because the typical size of 
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the island is comparable to the radial correlation length of the turbulence fluctuations, the 
anomalous toroidal stress is not applicable for describing the fine radial structures around the 
island separatrix.  

 
The symmetry-breaking-induced toroidal viscosity also provides a natural mechanism 

to determine the island rotation frequency [20,21]. The island rotation is determined by the 
sinξ  component of the relevant Ampere’s law [22]. Here, ξ  =m(θ−φ⁄q) + ωt is the helical 
angle of the island, ω is the island rotation frequency, θ is the poloidal angle, and φ  is the 
toroidal angle. The parallel current density in the Ampere’s law is determined from ∇•J  = 0 
with the perpendicular current density driven by the frequency (i.e., time) dependent 
symmetry-breaking-induced local (in ξ ) toroidal viscosity. The island rotation frequency in 
both the collisional and the collisionless regimes are calculated [20,21]. The more relevant 
regime in a neutral beam heated tokamak discharge is the plateau regime associated with the 
helical variation in |B|. The calculated Doppler-shifted island frequency,  

 

ω -ωE0 = - ω∗pi  - 0.5ω∗Ti,      (2) 
 

seems to be consistent with that observed in beam-heated discharges [23]. Here, ωE0, ω∗pi, 

and ω∗Ti are the equilibrium E×B frequency, diamagnetic frequency, and diamagnetic 
frequency due to the ion temperature gradient respectively. When the plasma collisionality 
decreases, electron viscous force can become dominant, and the island rotation frequency can 
reverse to the electron diamagnetic drift frequency.  
 

In contrast to the magnetic islands, resistive wall modes induce magnetic 
perturbations that are non-resonant, i.e., m – nq ≠ 0 over most of the plasma radius. For the 
non-resonant perturbed magnetic fields, the direct modification on |B | due to the perturbation 
[24] is of the same order as that due to the surface distortion [25]. Both of these modifications 
on |B | result in broken toroidal symmetry. It is shown that in this case the toroidal momentum 
loss is also enhanced, and the physics of the system is very similar to that in stellarators. To 
complete the description of the collision frequency dependence of the symmetry-breaking-
induced toroidal viscosity, a theory for the banana oscillation under the influence of the 
broken symmetry in |B|, without the assumption that |m –  nq| >> 1 employed in stellarator 
viscosity calculations, is developed [25]. In the 1/ν  regime, the toroidal momentum damping 
rate scales like ε 3/2(δB)2/ν , where ν  is the ion-ion collision frequency, ε  < 1 is the inverse 
aspect ratio, and δB is the perturbation of the MHD activity on |B |. The results can be 
compared quantitatively with the toroidal momentum damping rate observed in tokamak 
experiments when  resistive wall modes are present. 
 
4. Conclusions 
 

We have developed theories for the toroidal momentum confinement in realistic 
tokamak discharges. We find that in general the logarithmic gradient of the toroidal flow is a 
linear combination of the logarithmic gradients of the plasma pressure, and the temperature 
when the fluctuation-induced toroidal stress dominates. The toroidal momentum flux consists 
of a diffusion term, a convective term, and a residual term. The equilibrium toroidal flow is 
determined by balancing these three fluxes. We also illustrate that MHD activity, such as 
magnetic islands, and unstable MHD modes, breaks the toroidal symmetry in |B|, and results 
in enhanced toroidal momentum transport. The frequency-dependent symmetry-breaking-
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induced toroidal plasma viscosity provides a natural mechanism to determine the island 
rotation frequency as well. In the more relevant plateau regime, the Doppler-shifted island 
rotation frequency is of the order of the ion diamagnetic drift frequency. These theories can 
be tested when fluctuations, resonant, or non-resonant MHD activity are present. They can all 
be included in NCLSS [26] to model general transport phenomena with and without MHD 
activities present in tokamaks. 
 
This work was supported by US Department of Energy under Grant No. DE-FG02-
01ER54619 with the University of Wisconsin.  
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Abstract.  The high-temperature theory of the collisional drift -tearing mode is presented. In the regimes 
relevant to present day experiments the parallel electron thermal conductivity plays a key role and the novel 
analysis that is presented shows that the structure of the mode as well as the characteristics of the region where 
reconnection takes place differ significantly from the ones described in the original work [1] where the regime 
with relatively high collisionality was considered. A brief description is given of the “accretion” theory of the 
“spontaneous” rotation phenomenon and of the associated toroidal plasma collective modes that produce an 
inflow of angular momentum towards the center of the plasma column. 
 
1. Introduction 
 
The so-called drift-tearing mode that was described first in Ref. [1] couples the effects of 
magnetic reconnection, driven primarily by the plasma current density gradient, with those of 
the gradient of the longitudinal electron pressure. This mode has found a renewed 
appreciation recently in view of its relevance to current experiments. Consequently, the 
linearized theory of the drift-tearing mode has been reformulated for the high-temperature 
regimes in the important limit where the electron thermal conductivity along the field is 
significant. New characteristics for the mode amplitude radial profile and for the width of the 
reconnection layer have been found. We have pointed out originally that for modes involving 
singular perturbations the effects of nonlinearities become important at very small 
amplitudes. Thus we have considered a model equation relating the plasma displacement to 
the reconnecting component of the magnetic field where the ad hoc non-linear terms are 
included to simulate the effects of a local steepening of the local electron pressure gradient. 
This leads to a broadening of the reconnection layer and to an increase of the growth rate, 
relative to the linearized theory.  
 

We consider a simple magnetic configuration, which can simulate more realistic and complex 
ones and is represented by yyzz )x(B)x(B eeB += with 2

z
2
y BB << . The normal modes that 

involve magnetic reconnection are of the form )zkiykiti(exp)x(B~B̂ zyxx ++ω−=  with 

0BkBk zzyy =+  for x=x0, and 0<|x0|<a, where a represents the (macroscopic) width of the 

plasma layer. Thus 2
z

2
y kk >> , k⊥≈ky~1/a and )x(kB/k |||| =⋅= Bk . The electron thermal 

energy balance equation and the longitudinal electron momentum balance equation that we 
adopt include all the components that are relevant to rather weakly collisional regimes. In 
particular,  

 ||||e||Te|||| enTnpen0 JE η+∇α−∇−−≈ , (1) 

where αT is the thermal force coefficient and the other terms are easily identifiable. The 
effects of longitudinal electron pressure gradient terms are represented by the frequencies 

                                                 
1 Sponsored in part by the U.S. Department of Energy  
2 I.T.U., Istanbul, Turkey 
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( ) dx/dpenB/ck eye|| −=ω , ( ) dx/dnenB/cTk ||eye* −=ω  and ( ) dx/dTeB/ck ey
T
e −=ω . Thus 

T
ee*e|| ω+ω=ω  and we define T

eTe||
T
e|| ωα+ω≡ω . To describe the transverse electron guiding 

center motion, we take 0c/ˆˆ
E ≈×+⊥ BvE . Consequently Eq.(1) becomes 

 )
~

i)((i
n
n~

Tki)1(T
~

ki)(i
eB
c

J
~

kciB
~

)(i Ex
e

eyTey||||yx
T
e|| ξω−⋅−



 +α+⋅−η≈ω−ω BkBk  (2) 

where )i/(v~
~

ExEx ω−γ=ξ , B/E~cv~ yEx ≈ . In addition, 

 
2
x

2

02
Ex

2

di xd
B
~

d
)xx(

4
)(

i
xd

~
d

)ii()i( −
ρπ
′⋅

=
ξ

ω+ω−γω−γ
Bk ,  (3) 

where ( ) dx/dpeBn/ck iydi ⊥=ω  is the ion diamagnetic frequency. This equation, derived 
from the total momentum conservation equation [1], and Eq. (2) are valid in the 
“reconnection” layer of width δ L<<a , around x=x0, where 2

yk  can be neglected relative to the 

operator ∂ 2/∂x2 when applied to the perturbed quantitie s. Thus 
2

x
2

yy|| x/B~)ik/()4/c(x/B~)4/c(J~ ∂∂−π≈∂∂π≈ . Considering the magnetic diffusion 

coefficient πη≡ 4/cD 2
||m  and the frequency ωA defined by 222

A k4/)( πρ′⋅≡ω Bk , we 

define 1/kD A
2

m <<ω≡εη . Within the δL-layer the effects of finite ηε , electron thermal 

conductivity κ e|| and ion gyroradius, represented by diω , are important as will be shown. 

 
2. Influence of the Finite Electron Thermal Conductivity and Electron Compressibility 
 
The relevant linear theory, that includes the effects of electron thermal conductivity and 
electron compressibility, is considerably more complex than the original one given in Ref. 
[1], but is necessary for its application to high-temperature regimes. In particular, we refer to 
the form of the electron thermal energy balance equation 

 e||||e||||e||e
e

Ex
e T̂ûnT

xd
Td

v̂
t

T̂
n

2
3 ∇κ∇≈∇+





+

∂
∂ , (4) 

and consider the case ||e
2
||||e

2
||e||R Dk)n3/(2k~ ≡κ≡νω<γ  for γ+δω+ω≈γ+ω=ω ii R

T
e||R  

and γδω ~R . The appropriate theory requires the consideration of more than 2 asymptotic 
regions, the “outer” region corresponding to |1~)xx(k| 0− .  For this we define a transition 

distance T
Lδ  by ||e

2T
L||

T
e|| D)k( δ′≡ω . Consequently ( ) s

2/1
cee

T
L L/~ Ωνδ  where ys B/BL ′≡ . Then 

for 2T
L

2
0 )(|xx| δ>−  the electrons can be treated as isothermal, for 2T

L
2

0 )(|xx| δ<−  as 

adiabatic, and for 2T
L

2
0 )(~|xx| δ−  the complete expression for ee T/T~  has to be considered.  

 
The low thermal conductivity region is defined by ( ) 2T

L
2

0||e
2

|| )()xx(Dk/ δ<−<′γ  and is the 
most important of all the asymptotic regions considered as the mode is, basically, localized 
within it. An approximate analytic solution of Eqs. (2)-(4) that we have found within this 
region shows that it is characterized by two length-scales. In particular, the characteristic 

distance for variation of Ex

~
ξ  is ( ) 3/1

cee
3/1

s
3/2

sosc /L~ Ωνρδ  and the decay scale-length, which 
could be taken as the characteristic width of the reconnection layer is 
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( ) 5/2
cee

5/4
s

5/1
sL /L~ Ωνρδ . The condition δ osc>ρ i implies that ( ) si

2/1
cee L// ρ>Ων , which 

also ensures that T
LLosc δ<δ<δ . We may argue that these conditions can be satisfied 

realistically for relatively high temperatures. It is evident that the growth rate of this mode is 
rather weak, 5/3

eLm )k/(D~ ν∝δγ   and the amplitude of the plasma displacement is of the 

order of ( ) T
||e

4
Lm

2T
L0xEx /D/kB~~~ ωδδ′⋅ξ Bk . These results are valid for sufficiently small 

T
LoscT / δδ≡ε . Our numerical analysis shows that the asymptotic theory gives satisfactory 

description of the eigenmode structure for 3.0T ≤ε  In a typical Ohmic discharge by the 
Alcator C-Mod machine, for example, Tε  varies between 0.2 and 0.8. In fact, for the sake of 

completeness, the equation for Ex

~
ξ  that covers the low and the finite conductivity regions and 

extends into the isothermal region has been integrated numerically. 
 
The finite thermal conductivity region corresponds to 2T

L
2

0 )(~)xx( δ− . Within this region, 
the appropriate dimensionless form of Eqs. (2) and (3) has to be solved numerically. Our 
solution demonstrates that for a wide range of relevant parameters the peak of the 
eigenfunction occurs around 1~x  where )/()xx(x T

L0 δ−≡  and that the asymptot ic solution 

)xx(k
1kD

~
)xx(k

1i~
kB~ 0

T
||eL

m

0e*
T
||e

R
Ex

0x −ωδ−ω−ω
δω−γ

≈ξ
′⋅Bk  is recovered for x  between 2 and 4. 

Therefore we may consider T
Lδ  as the basic scale distance for the reconnection layer. We note 

that the quantity )kB
~

/(
~

)( 0xExξ′⋅ Bk  remains well below unity in the “outer” region, a 
situation that is quite different from that of the purely resistive theory where this quantity is 
of order unity in this region. 

 
3. Nonlinear Model 
 
The nonlinear effects which are included in the simple model equation that we have analyzed 
are related to i) the (quasilinear) decrease of dpe||/dx due to the effects of pre-excited modes, 
of the same kind, that couple with the considered mode and ii) the fact that x/p̂B̂ ||ex ∂∂  

becomes important relative to ||e||e p̂)(ip̂ BkB ⋅=∇⋅  as Bk ⋅  tends to vanish within δ L while 

L||e||e /1~|p̂|/|x/p̂| δ∂∂  tends to become singular. Consequently, the width of the layer where 

these two terms are comparable is of the order of 2/1
0xNL |)(/B

~
|~ Bk ′⋅δ  and this width can 

exceed easily that obtained form the linearized theory for quite small amplitudes of the 
reconnected field 0xB

~  at x=x0. As an illustrative example, we consider a model equation for a 

“large thermal conductivity limit” ||m/Tk ee||e
2
|| ων> . The model consists of Eq. (3) and the 

following nonlinear replacement of Eq. (2) 

 

2
x

2

me*REx0

0xNLN
R

T
e||

T
e||

NL
T
e||

T
e||R

xd
B
~

d
D)ii(

~
)xx)((i

B
~

f1)f(i

+ω+γ+ω−ξ−′⋅≈






















α

ω−ω

ω
−γ+ω+ω−ω−

Bk

  (3) 

Here fNL represents the nonlinear effects described earlier, αN is a constant parameter and we 
have taken 2

ExNL |xd/
~

d|f ξ= . We note that within  the δ NL-layer ])x(1[B
~

B
~

0xx ϕε+≈ δ , where 
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εδ≡kδNL and NL0 /)xx(x δ−≡ , and the solution for ξ Ex(x) of these equations develops a 
singularity in the curvature (d2ξEx(x)/dx2) that is removed by the effects of finite resistivity. 
The growth rate of the mode is enhanced relative to that found by the linearized resistive 
theory and can reach values of the order of 2/3

A δεω  for γ<ω<ω T
||eR . 

 
We note that tridimensional stability analyses concerning both cylindrical [2] and toroidal [3] 
configurations have indicated that when the effects of the longitudinal pressure gradient are 
included, the rate of reconnection produced by the excited modes increases considerably, and 
the width of the reconnection region is definitely broader. In fact we consider that nonlinear 
drift-tearing modes can provide the explanation for modes involving magnetic reconnection 
that have been observed experimentally [4], and do not appear to correspond to neoclassical 
tearing modes. 
 
4. Accre tion Theory of “Spontaneous Toroidal Rotation” 
 
Another important process that is intrinsically connected to the transport of the plasma 
thermal energy is the “spontaneous toroidal rotation” of axisymmetric plasmas. This 
connection was pointed out first in the formulation of the so called accretion theory [5,6] and 
has been confirmed consistently by the most recent series of experiments [7] on this 
phenomenon. According to this theory, angular momentum in one direction is “accreted” on 
the material wall surrounding the plasma column [8] while angular momentum of the 
opposite direction (e.g. in the direction of the ion diamagnetic velocity in the case of the H-
confinement regime) is carried from the edge toward the center of the plasma column by 
modes that are driven primarily by the plasma pressure gradient. A transport equation for 
angular momentum that included an inflow term in the direction of increasing angular 
momentum, like that adopted earlier to describe the particle transport, was in fact given in 
Ref. [9]. We have verified that toroidal ballooning modes do not provide significant transport 
of net angular momentum. Thus toroidal “travelling modes”, along the magnetic field, which 
instead can carry net angular momentum in the radial direction, have to be present and have 
significant amplitudes. Two forms of the relevant quasilinear theory are derived identifying 
the ion pressure gradient as the driving factor for the angular momentum inflow and 
associating the sign of the ratio of the relevant poloidal to the toroidal mode numbers to that 
of the plasma toroidal velocity gradient. According to this analysis the source of the 
excitation of travelling modes is near the edge of the plasma column, from which the rotation 
velocity has been observed to enter, while the source of excitation of the ballooning modes is 
well within the plasma column where the ratio (η i=d ln Ti/ d ln n) of the ion temperature 
gradient to the density gradient is maximum.   
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