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Abstract. To investigate the dynamics of the disruption of DIII-D discharge number 87009, two
types of initial-value simulations with the NIMROD code were performed to investigate different
characteristics. In the first set of simulations, a conducting wall was placed on the last close flux
surface, and an equilibrium that was close to the ideal-MHD marginal stability point was created.
A heating source was added to the pressure equation to drive the plasma equilibrium through an
ideal-MHD instability point. Excellent agreement with analytic theory was obtained. To investigate
how the stored energy is deposited on the wall, free-boundary simulations were performed with an
ideal-MHD unstable equilibria. The unstable modes grow until the magnetic islands overlap and the
magnetic field is stochastic over a large part of the plasma domain. The rapid stochastization of the
field allows the plasma to lose two thirds of its internal energy in approximately 200 microseconds in
qualitative agreement with the experiment. The deposition of thermal energy on the wall is localized
poloidally and toroidally on the wall due to helically-localized temperature gradients and the rapid
parallel heat conduction which carries this heat flux to the wall.

1 Introduction

The experimental phenomenology of the disruption in DIII-D discharge 87009 has attracted
a great deal of theoretical interest [2-5]. A combination of analytic theory [2] and linear
ideal MHD code analysis [3] has been successful in predicting both the time scale of the
disruption [2] and the spatial structure [3] of the mode. The success of the model and the
indication that the phenomenology can be described with strictly a magnetohydrodynamic
model makes this an attractive case to study with the NIMROD [6] nonlinear initial-value
code. Unlike the simple analytic/linear numerical MHD model, an initial-value code allows
for detailed studies of the mechanism leading to the loss of plasma confinement and the
resultant heat deposition on the plasma wall.

This paper presents two different NIMROD simulations. In the first, the time-dependent
behavior is modeled using a fixed boundary equilibria. The emphasis of this simulation is
to numerically validate the analytic model of Reference [1]. In the second simulation, the
NIMROD simulation starts from a free-boundary equilibrium that is above the ideal MHD
threshold. The emphasis in this simulation is to model how the heat flux gets deposited on
the wall. In the final section, conclusions are drawn and further work is discussed.
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2 Fixed-boundary simulations

Typical initial-value MHD simulations of tokamak plasmas have been performed with the
conducting boundary on the last closed flux surface. Fixed-boundary simulations have two
advantages: 1) they avoid the numerical difficulties associated with allowing the large-
gradients near the boundary to move, and 2) it is much easier to create equilibria that have
some desired property, such as proximity to marginal stability. To investigate the time-
dependent behavior of a plasma disrupting as it is heated through an ideal-MHD instability,
a series of fixed-boundary simulations was performed with the NIMROD code.

Instabilities observed in plasmas are typically classified by the time scales associated
with their growth (with the ideal modes growing on the Alfvenic time scale, and the other
modes having a time scale that is a hybrid of the Alfvenic and resistive time scales) and by
calculating the stability of the reconstructed equilibrium with linear eigenvalue codes.[2]
However, this traditional type of analysis neglects how the plasma reached an unstable
equilibrium. Recently, an analytic theory [1] has been put forth to describe the growth
of an instability being driven through the marginal stability point. Assuming that the free
energy of the mode is proportional toβ, then

ω2 =
δW

δK
∼ −γ̂2

MHD

(
β

βcrit

− 1

)
. (1)

Assuming a slow heating rate so that the heating may be approximated as a linear increase
in β with a heating rateγh near the marginal point,β(t) = βcrit(1 + γht), one obtains a
growth rate that depends on the heating rate with the resultant mode growing faster than
exponential:

ξ = ξ0 exp
[
(t/τ)3/2

]
. (2)

The time constant of the mode is a hybrid of the variation of the growth rate with beta and
the heating time scale:

τ ≡ (3/2)2/3

(γ̂MHD)2/3γ
1/3
h

. (3)

As the limit of either̂γMHD or γh goes to zero, the mode does not grow because it is exactly
at the marginal point.

This heuristic analytic theory was successfully used to explain many of the features
of DIII-D discharge 87009 which disrupted during neutral-beam heating [1], including
the time-scale that was deemed to be too slow for an ideal mode. An interesting part of
this derivation is the use of linear theory to model the instability which is observed in the
nonlinear regime. To further test this theory and gain additional insight into the nonlinear
behavior, discharge 87009 was modeled using the nonlinear resistive MHD equations with
anisotropic heat conduction with an equilibrium with similar pressure and safety factor
profiles as the actual discharge at 1681.7 msec.

Before running a self-consistent nonlinear simulation with heating, it is necessary to
begin the simulation near the ideal marginal stability point. Because having a conducting
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wall placed on the last closed flux is stabilizing, the plasma pressure was raised to the
ideal marginal stability point by self-similarly increasing the plasma pressure profile. To
determine the critical beta with sufficient accuracy, the equilibrium was varied fromβN =
4.0 to βN = 5.0 in increments of∆βN = 0.05. The ideal linear stability of the equilibria
was tested with DCON [3] to determine plasma stability to ideal modes using a generalized
version of Newcomb’s criterion [4]. Because linear calculations with NIMROD take much
longer than DCON to determine ideal stability, using DCON on a large number of equilibria
is generally preferred. The ideal marginal stability point was found by DCON to beβN =
4.45. Linear NIMROD simulations found resistive interchange modes atβN = 4.0, and
the extremely robust growth rates expected of ideal instabilities atβN = 5.0 andβN =
6.0. Because the growth of the mode atβN = 4.45 is very slow, we consider it to be
computationally stable(with regards to ideal instabilities) and we choseβN = 4.70 as the
starting point for our calculations.
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FIG. 1: Then = 1 perturbation grows faster than exponential as predicted by analytic theory.

To model the heating of the plasma, a heating source is added to the pressure equation:
Q = γhpeq. The NIMROD simulations were run with Lundquist numberS = 106, Prandtl
number (ratio of normalized resistivity to kinematic viscosity)Pr = 200 with heating rates
of γh = 10−3 s−1 andγh = 10−2 s−1. Because our heating rate is slow compared to the
growth of the mode, but still much faster than the resistive decay time (γ̂MHD � γh �
1/τR), the assumptions of the analytic theory [1] are satisfied. A finite-element grid in
the poloidal plane with128 radial vertexes and64 poloidal vertexes was used with cubic
polynomial Lagrangian elements [5]. The toroidal direction is discretized using the pseudo-
spectral method using then = 0 andn = 1 modes. Only the first two modes are kept
because the highern modes are substantially destabilized due the necessary increase in beta
to make then = 1 mode unstable in the presence of a conducting wall on the boundary. Our
results are only qualitatively correct in the fully nonlinear regime, but the goal is to explore
the behavior in the experimentally-relevant quasi-linear regime and compare the results to
the analytic theory. Note that throughout the simulations, NIMROD’s finite-element grid
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FIG. 2: Plotting the log of the magnetic energy,Em, versus the the normalized time raised to3/2
power shows excellent agreement with the analytically-predicted scaling behavior as evidenced by
the straight lines.

is aligned to the equilibrium magnetic field and does not move although the flux surfaces
shift outward as the plasma heats.

The results of the NIMROD simulation withγh = 10−3 s−1 are shown in Figure 1.
As predicted by the analytic theory, the growth of the mode is faster than exponential.
This faster-than-exponential growth satisfies Eq. (2) well into the nonlinear regime. as
represented by the straight lines in the fitting shown in Figure 2. Using the slopes of the
lines in Figure 2 to determine the time constant for each heating rate gives a fit to the time
constant of

τ ∼ γ̂−0.72
MHDγ−0.28

h (4)

which agrees well with the analytic prediction given by Eq. (3).

3 Free-boundary simulations

To minimize the interactions of the hot plasma with the cold wall, modern tokamaks divide
the plasma into two distinct regions: a core region where field lines close upon themselves
and confine the plasma (Te ∼ 10 keV in DIII-D) , and a “halo” region where the field
lines intersect the wall and the plasma remains cold (Te ∼ 10 eV in DIII-D). The separa-
trix which divides the two regions is only clearly defined in a two-dimensional magnetic
field – in three dimensions a stochastic region exists in general that blurs the separation.
NIMROD’s use of high-order elements [5] allows the accurate modeling of the heat flux
required to resolve the distinction between the halo region and core region as the plasma
evolves nonlinearly.

The simulation was initiated from an equilibrium based on the best equilibrium recon-
struction at1675 ms. Because starting below the critical ideal MHD threshold adds com-



TH/P2-25 5

putational cost to an already expensive calculation, the equilibrium pressure was raised
self-consistently by 8.7% above the best equilibrium reconstruction to place the plasma
beta above the ideal MHD threshold.

The simulations presented were run with a temperature dependent resistivity normal-
ized such that the Lundquist number in the core plasma wasS = 105. A ratio of κ‖/κ⊥ =
108 was held constant throughout the computational domain. The boundary conditions are
applied at the vacuum vessel (modeled as a perfectly conducting wall), and not the first ma-
terial wall. The normal component of the magnetic field is held constant at the conducting
surface. The boundary conditions are also applied at the vacuum vessel instead of the more
physical limiter surface for the density, velocity, and temperature.

In Figure 3, the global parameters of internal energy and plasma current from the NIM-
ROD simulation are shown. The plasma energy decreases by two-thirds in approximately
200 microseconds in qualitative agreement with the experiment. Because constant voltage
boundary conditions are used in this simulation, the plasma current changes as reconnec-
tion processes occur inside the plasma and the internal inductance changes.

As the temperature evolves during the simulation, the first notable macroscopic feature
is the appearance of a2/1 island, as seen in Figure 4(a). Two magnetic field lines started
near the same point are shown. They are colored according to the temperature along their
path, and the brightness of the nodes indicates the distance along the fieldline to aid in the
visualization. At this time step, the temperature has equilibrated sufficiently that the island
can be seen in the temperature isosurface, although significant variations of the temperature
along the magnetic field line are beginning to occur. As the plasma evolves, secondary
islands are generated and overlap causing stochasticization over most of the domain.

At time of maximum heat flux, Figure 5(a), the heat flux is localized toroidal on both the
top and bottom divertors, 180 degrees apart. There is also a significant poloidal structure to
the heat flux. Exploring the topology of the magnetic field in more detail, in the isosurfaces
of Figure 5(b), we see that the locations of maximum heat flux are connected by a magnetic
field line. Because the heat transport along magnetic field lines is much more rapid than
heat transport across field lines, any heat flux that reaches the open field lines is able to
quickly equilibrate and reach the plasma boundary. The localization of seen on the divertor
region is therefore a consequence of localization of heat flux within the core plasma. The
localization of heat flux within the core plasma results from the initial perturbation, which
distorts and compresses the temperature surfaces and raises the heat flux.

4 Discussion and Conclusions

Despite the heuristic nature of the analytic derivation of mode growth being driven through
an ideal marginal instability point, the NIMROD simulations show that the analytic scaling
given by Eq. (2) gives an excellent description of the mode growth even into the nonlinear
regime. For ideal modes, where the mode amplitudes can grow quite large with a change
in magnetic topology, the fundamental assumptions of the analytic theory holds into the
nonlinear regime. The simulations emphasize the importance of simulating not only the
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FIG. 3: The plasma loses two-thirds of its internal energy in 200µs, in qualitative agreement with
experiment. Because constant voltage boundary conditions are used, the current rises during the
reconnection events in the plasma.

instability, but the mechanism by which the plasma has evolved to that state. Unfortunately,
simulations near the marginality point are the most difficult to simulate due to the slowness
of the mode growth.

The free boundary simulations which explored the realistic DIII-D geometry and heat
flux deposition shows many of the qualitative features of plasma disruptions. The macro-
scopic loss of energy confinement time of200 microseconds is in qualitative agreement
with experiment. The localization of the heat flux, both toroidally and poloidally is ob-
served during disruptions in detail. The heat flux localization arises because of the magnetic
topology resulting from the internal reconnection events. Rapid temperature equilibration
carries the localized heat loads to the divertor walls. Qualitative agreement with the ex-
periment did not require the use of complicated plasma-wall interactions. This is primarily
because the plasma stayed relatively well-confined within the original last-closed flux sur-
face, and the time-scale of the mode growth is rapid compared to the time-scale of impurity
penetration. For disruptions where mode growth occurs on a slower time scale, modeling
of impurities in the NIMROD code would be necessary.

Future work will include more accurate modeling of the heat flux, including temperature-
dependent Braginskii coefficients, use of Landau-fluid closures, [6,7] a kinetic calculation
of heat flux, [8,9] resistivity value to overcome the main weaknesses of the current set of
numerical experiments: the use of a Braginskii heat flux model with constant coefficients
and the use of artificially high resistivity. Future simulations will also try to drive the
free-boundary simulations through the stability point in the same way the fixed-boundary
equilibria were driven. By more accurately modeling the time-dependence and physical
parameters, quantitative comparisons can be made. This will allow us to explore the role
of the external magnetic configuration in the role of the heat deposition.
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FIG. 4: The first macroscopic feature in the temperature isosurfaces, is the2/1 island.
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