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Abstract. The feasibility of stabilizing a Z-pinch by means of an axial shear flow has been studied theoretically, 
numerically and experimentally. Since the results of the MHD stability analysis can depend on the equilibria that 
are being considered, we start by analysing families of self-consistent equilibria with sheared flow, which could 
represent feasible starting points for the stability analysis. The electric field is determined by the generalised 
Ohm�s law. This leads to small deviations from local quasi-neutrality, as is found from Poisson�s equation. The 
self consistency of the flow is related to such deviations, which can be proposed as a function of the plasma 
density. It is found that for certain flows, self consistent equilibria can only be possible if the plasma is non-
neutral. We also study the properties of a nozzle design that ejects a converging supersonic jet on the axis, which 
could be used as a target for the current sheath in plasma foci. A numerical simulation of this design is carried 
out, using an adaptive grid code that solves the gas-dynamics equations. 
 
1. Introduction 
 
The theory of magneto-hydrodynamic (MHD) stability with equilibrium flows dates back to 
the early days of fusion research [1], and its most important results, mainly for toroidal 
plasmas, have been reviewed in Ref. [2]. The study of local MHD instabilities for cylindrical 
plasmas, with sheared equilibrium flows, is ideal for the understanding of the problem, since 
the symmetry allows simpler calculations. The problem was initially studied by Bondeson et 
al.[3], and the feasibility of stabilizing a Z-pinch by means of an axial sheared flow has been 
studied theoretically and numerically by Shumlak et al. [4, 5], and Arber and Howell [6]. 
Although their conclusions differ in the details, they both agree in the general result that 
sheared flows can have a stabilizing effect. These results are backed, at least qualitatively, by 
experimental observations [5, 7, 8]. Further theoretical work has been recently done, where 
the inclusion of finite Larmor radius effects have been considered [9, 10], and Lyapunov 
stability has been explored [11].  
 
Although there has been little valuable experimental work in this respect, the plasma focus is 
an ideal test bed for the introduction of this resource for stabilization. On one hand, the 
density of the filling gas in dense plasma foci is limited by the energy available for 
breakdown, and ionization of the neutral gas by the plasma sheath, during the rundown phase. 
On the other, it is desirable to increase the density of the plasma during the compression 
phase, when the current in the circuit approaches its maximum, in order to improve the 
neutron yield. The idea of injecting a gas jet at the tip of the inner electrode was originally 
proposed by Vikhrev [12], and it has been shown both in small [13] and large [14] plasma 
foci that it is possible to decouple the compression phase from the breakdown and the 
rundown phases by these means. Not only is the neutron emission significantly increased, but 
the uniformity of the discharges is also improved. Since the wide variability in the radiation of 
these kind of devices is strongly related to the m=0 instabilities during the compression phase, 
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it can be speculated that the jet may be able to suppress them, which is consistent with the 
results separately obtained for the z-pinch. Further experimental work in this line is badly 
needed, in order to find out whether such speculation can be supported. 
 
Since the results of the MHD stability analysis depends on the equilibria that are being 
considered, we start by analysing families of self-consistent equilibria with sheared flow, 
which could represent feasible starting points for the stability analysis. Proposing binomial 
shapes for the current density radial profiles, we propose a family of equilibria, which are 
qualitatively different. In the case when only axial sheared flows are considered, the 
equilibrium pressure profiles are independent of the flow, but when azimuthal flows are 
included, the pressure surfaces depart from the magnetic field surfaces, as the flow increases. 
In the present work we shall thus study the axial flow case. The electric field is determined by 
the generalised Ohm�s law. This leads to two different situations. Either a flow that is 
truncated for small radii is allowed, preserving quasineutrality, or alternatively, small 
deviations from quasi-neutrality should be allowed, as is found from Poisson�s equation. The 
self consistency of the flow is related to such deviations, which can be proposed as a function 
of the plasma density. It is found that for certain flows, self consistent equilibria can only be 
possible if the plasma is non-neutral.  
 
As a contribution to future experiments in plasma foci with gas injection, we also study the 
properties of a nozzle design that ejects a converging supersonic jet on the axis, which could 
be used as a target for the current sheath. This converging flow results in the formation of a 
reflected shock beyond the exit of the nozzle, in which the density is enhanced. A numerical 
simulation of this design is carried out, using an adaptive grid code that solves the gas-
dynamics equations [15]. In section 2 we present our mathematical model and the calculation 
of the relevant equilibria. The linear stability equations are formulated in section 3, and some 
discussion of ho this can be applied to the plasma focus is given in section 4. 
 
2. Model Equations for the Equilibria 
 
The equilibria are obtained in terms of the standard ideal magneto-hydrodynamic model given 
by the continuity equation 

( ) 0=⋅∇+
∂
∂ vρρ

t
    ,  (1) 

the momentum equation  
( ) pt ∇−×=∇⋅+∂∂ Bjvvv /ρ   ,  (2) 

conservation of  specific entropy 
( )( ) 0// =∇⋅+∂∂ γρpt v    ,  (3) 

generalised Ohm�s law 
0=×+ BvE      ,  (4) 

 
Faraday�s law 

tB ∂−∂=×∇ /E     ,  (5) 
and Ampere´s law 
    jB oµ=×∇    ,    (6) 
subject to the initial conditions 
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Here ρ and ρc are the mass and charge densities, p is pressure, v, E, B and j are respectively 
the plasma velocity, the electric and magnetic fields, and the current density. Although 
equation (7) is usually ignored, assuming deviations from quasineutrality are negligible for 
magnetohydrodynamic time scales, in our case it might be important, so we shall keep it, still 
assuming that it is small enough to ignore it in the momentum equation (2). 
 
Thus, the corresponding equilibrium equations will be: 
    ( ) 0=⋅∇ oo vρ     ,   (9) 
    ( ) oooooo p∇−×=∇⋅ Bjvvρ   ,   (10) 
    ( ) 0=⋅∇+∇⋅ oooo pp vv γ   ,   (11) 
    0=×+ ooo BvE   ,    (12) 
    ooo jB µ=×∇    ,    (13) 
    ocoo ερ /=⋅∇ E   ,    (14) 
where the equilibrium variables are tagged by subindex o. 
 
Assuming cylindrical  and axial symmetry, so the equilibrium variables depend only on the 
radius r, and an axial flow ( ) zz rv ev = ,  (10-14) can be rewritten as: 
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−=   ,    (15) 

    ϑoozor BvE =    ,    (16) 

    ( )ϑµ o
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    ( )
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r ε
ρ
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If finite Larmor radius effects were considered in (12), then (16) and (18) should be modified 
accordingly. However, for current experimental situations, in which the axial flow can be 
significant enough they are negligible, so in this work we shall ignore them. 
 
Under this symmetry assumptions, ( ) 0=∇⋅ ooo vvρ  in (7), and therefore equilibria are the 
same as those when there is no flow. The problem is now to find the flows that are self-
consistent with them.  
 
Let us now rewrite each variable as he product of a shape factor, which depends on the radius 
r, and a parameter that can be varied: po(r)=Popo(r), )()( rjJrj oooz = , )()( rbBrB oo =ϑ , and 
voz(r)=vouo(r). The charge density will be expressed as  

 
)()()()( rnNernenZner oooeico λλρ =≡−= ,   (19) 

 
where ni and ne are the ion and electron densities, and λ  <<1 so that it can still be ignored in 
(2) and (15). 
 
If the current density profile can be experimentally tailored, the magnetic field  can be 
obtained,  
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and the equilibrium pressure profile can be determined by integrating (15).   
 

   ∫=
a

r oooo dssFsj
s

Jrp )()(1)( 2µ  ,   (21) 

 
where a is the radius of the plasma column. 
 
In order to determine the self-consistent axial sheared flow there are two possibilities: From 
(18), if )(rcoρ , or its integral over the radius, taking the scale factor into account, are zero,  
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where K is constant. Since 0)0( =ϑoB , this means that there should be no flow on the axis, 
and thus K must be treated as a step function which is null close to the axis, and finite for radii 
r such that arro ≤≤<0 . Alternatively, one may allow a small deviation from 
quasineutrality, and from (18) and (19), 
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where the magnitude of the flow is limited by need to keep λ  <<1. In this work we shall 
limit ourselves to analyse the second case. 
 
3. Sample Equilibria 
 
A family of equilibria with a wide range of qualitative behaviours, with a maximum current at 
the axis, can be generated by choosing a density current profile of the form [16] 
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The magnetic field is found to be 
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and the pressure profile 
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Fig. 1. Current density and magnetic field profiles for the case n=1/2. 

 
Fig. 2. Current density and magnetic field profiles for the case n=2. 
 

 
Fig. 3. Current density and magnetic field profiles for the case n=20. 
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Figures 1-3 show the cases when n=1/2, 2 and 20. The first is strongly peaked, while the latter 
is practically that of a constant current. If current profiles with a minimum on the axis are 
required, they can be obtained by taking n

ooz arJj )/(= . By increasing n, it is possible to 
have density current profiles which range from those with a mild slope, to others which are 
essentially constant, with a strong slope close to the border. 
 
In order to obtain self consistent flows, we propose ( ) ( )[ ]l

o arrn /1−=  , l > 0. It is found that 
the self consistent flows are given by  
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A couple of examples are given in Fig. (4a) for n =1/2, l = 30, and Fig. (4b) for for n =2, l = 
30. 

Fi
gure 4. Examples of self-consistent flows with deviations from quasi-neutrality. (a) n =1/2,  
l = 30, (b) n =2, l = 30. 
4. Stability Analysis 
 
Following Refs. [3] and [6], it is now possible to make a linear stability analysis based on the 
Lagrangian displacement ( ) ( )[ ]kzmtir −+= ϑωexpξξ . The problem is reduced as usual, to solve 
for the radial component ( rrξ ) and ( )[ ] BBppp ⋅××∇+∇⋅−⋅∇−= ξξξγ* : 
 

( )( ) *1211
'/1 pCrCrrAS rr += ξξ  ,              (28a) 

               *2221* ' pCrCASp r += ξ  ,              (28b) 
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where A,S,Cij, with i = 1,2; j = 1,2, are functions of the equilibrium quantities, and ω, k, and z.   
 
5. Nozzle Design for Stabilization in Dense Plasma Focii 
 
The idea of introducing a gas-puffed target at the tip of the inner electrode, just before the 
compression phase, was proposed by Vikhrev several years ago [12], and tested 
experimentally by Schmidt et al. in the Poseidon plasma focus, which is a large device, that 
can operate up to 500 kJ at 80 kV [14], and Milanese et al. in the PACO device, which is a 
small device, operating at 2 kJ, 31 kV [13]. In the former case, the inner electrode is 460 mm 
long, 131 mm dia., while in the latter it is only 4 mm long, with 4 mm dia. In POSEIDON the 
target gas jet was formed with a system of nozzles arranged on a circle. In Ref. [14], 16 
nozzles parallel to the electrode axis, with 5 mm dia. were used, arranged on a r=28 mm 
circle. The conclusion was that the target gas allowed a better reproducibility of the pinch, 
although the effect of the neutron yield varied widely. While in some cases it was reduced, 
under optimal conditions it could be increased by 30\%. They later improved their results 
substantially with an arrangement of 24 nozzles (2mm dia.) slanted 15 degrees towards the 
axis, on a r=24 mm circle. In this study, the device was operated at two different energy 
levels: 135kJ, 41.6kV and 210kJ, 51.5kV. While for the lower energy mode of operation, 
some turbulence appeared in the plasma column, induced by the gas streams, it disappeared 
for the higher energy one. Furthermore, the first neutron pulse was increased with a 
consequent increase in the neutron yield, while the second neutron pulse was suppressed, 
along with its associated electron pulse. Apparently, this is due to a suppression of plasma 
instabilities by the gas flow, although further investigatin is neeed. For best conditions, an 
80\% increase in the neutron yield was found. Since PACO's electrode is smaller, a single 
straight on axis nozzle (2 mm dia.) was used [13]. This work confirms the findings that the 
target jet allows a better uniformity of the neutron yield on a shot to shot basis, and optimising 
the operation they were able to produce an almost 200\% increase in the neutron yield.  
 
It is therefore desirable to design nozzles that produce better targets for compression, and to 
study their interaction with the current sheath. The nozzles should maintain a narrow beam of 
high density gas in the focus zone during the compression. Figure 5 shows a nozzle design we 
have in process, for which only the gas dynamics have been studied so far. The two main 
features we look for are the convergence of the cylindrical beam towards the symmetry axis, 
and a high Mach number. We have performed 2D simulations with an axisymmetric adaptive 
grid code developed by Raga [15], which solves the gas-dynamics equations together with a 
system of rate equations for atomic/ionic and molecular species. This code has been 
previously validated by comparing its results with experiments of a shock wave driven in a 
gas by a Nd-YAG laser [16].  We propose a nozzle in which the outer wall is conical, with a 
half-opening angle φ (see Figure 1). This opening angle is chosen so as to fix the required 
convergence for the emerging jet beam. The nozzle also has an internal obstacle, which has a 
conical base. The opening angle of the internal cone has of course to be larger than the 
opening angle of the outer cone, in order to ensure that the cross section available for the flow 
(which is limited to the gap between the two cones grows with distance along the axis of the 
nozzle. The prolongation of the two cones in the upstream direction would join at a 
cylindrical radius ro, and we choose the position of this point along the symmetry axis as the 
zero-point for the x-(axial) coordinate. In order to have a finite gap of width ∆ (in order to 
allow the flow to enter the nozzle) it is of course necessary to truncate the two cones at a 
distance xi  (along the symmetry axis) from the point at which the two cones would intersect. 
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Figure 5. Nozzle design for a target jet in a dense plasma focus, for which convergence of the beam 
and high a Mach number are sought. 
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