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Abstract Sheared flow layer (SFL) formation due to magnetic energy release through tearing-

reconnections in tokamak plasmas is investigated. The characteristics of the SFLs created in the
development of double tearing mode, mediated by electron viscosity in configurations with non-
monotonic safety factor ¢ profiles and, therefore, two rational flux surfaces of same ¢ value, are

analyzed in detail as an example. Quasi-linear simulations demonstrate that the sheared flows in-
duced by the mode have desirable characteristics ( lying at the boundaries of the magnetic islands),
and sufficient levels required for internal transport barrier (ITB) formation. A possible correlation
of the SFLs with experimental observations, that double transport barrier structures are preferen-
tially formed in proximity of the two rational surfaces, is also proffered.

1. Introduction

Internal transport barriers (ITBs ) in advanced tokamak (AT) discharges are formed
due to turbulent transport suppression by sheared flow layers (SFLs) in accordance with
anomalous transport theory. Conditions, especially radial positions, for triggering SFLs and
ITB formation, have been intensively investigated in recent years. However, dynamics for
SFL and ITB formation is still not well understood yet.

Experimental observations on JT-60U, DIII-D, TFTR, RTP, JET and ASDEX Upgrade
show that I'TBs are preferentially formed near low order rational flux surfaces, and are often
found to associated with presence of MHD activity [1,2]. In addition, SFLs are observed
at the boundaries of magnetic islands in LHD experiments [3]. A particularly interesting
observation in JET reversed magnetic shear discharges is that two radially separated I'TBs
simultaneously exist and follow the two ¢ = 2 surfaces [4]. The amplitude of the MHD
activity (the top part of Figure 8 in Ref. 4) is higher when the double ITB structure exists
than it is before the ITB structure is generated. The ITBs are terminated by an m = 2 MHD
mode which, extending from the inner to the outer foot point location of the two I'TBs, has
precisely the defining theoretical characteristic of double tearing mode (DTM).

Low order rational flux surfaces are prone to excitation of MHD instabilities. Magnetic
energy released in reconnection processes may drive significant plasma flows. Therefore,
MHD instabilities are plausible triggering mechanisms for the formation of SFLs and then
ITBs. A model for double SFL and ITB structures in tokamak plasmas with reversed mag-
netic shear (RS) is proposed in this work.



By simulating the nonlinear development of electron viscosity double tearing mode [5],
we demonstrate the creation of sizable sheared poloidal flow layers at the boundaries of
the magnetic islands. The reduced dissipative 2D MHD equations with electron viscosity
included are solved as an initial value problem for a single harmonic of perturbations in a
standard sheared slab for simplicity [6].

2. Physical models and basic equations

We consider a plasma slab of length a in the x-direction, with a current in the z- direction,

and zero equilibrium flow velocity Vy = 0 embedded in the standard sheared magnetic field

By () = Byy(2)y + By.(2)Z, (1)

where By,(x) equals zero at & = +x,. The stability of this initial configuration will be
examined with respect to two-dimentional, incompressible perturbations. The vector fields
are expressible in terms of two scalar potentials : the flux function ¢(x, y, t),

B, =Vy xz, (2)
and the stream function ¢(z,y, t),
V., =Véx i (3)

With electron viscosity, the Ohm’s law becomes
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It is straightforward to write the z-component of Eq. (4) as
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after using Eq. (2) and Faraday’s law. Here, 7 is the plasma resistivity, p. is the parallel
electron viscosity diffusion coefficient, m, is the electron mass, n. is the electron density, e
and c are, respectively, the electron charge and the speed of light. The z-component of the
curl of plasma motion equation may be written as
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where p is the mass density of the plasma, p; is the ion viscosity. Normalizing all lengths to
a, time to 7, = a/v4, the poloidal Alfvén time of a plasma column of scale width a, and the
magnetic field to some standard measure By, Eqs. (3), (5) and (6) transform to :
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where S = 7, /7, is the magnetic Reynolds number with 7. = 4wa®/c*n, R = 7,/ is the elec-
tron viscosity diffusion Reynolds number, while 7, = 4ra*n.e®/uem. = w2,a'/cpe, Ry =
Tyi/ T is the ion fluid Reynolds number with 7,; = pa®/pu;, and
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is the Poisson bracket. E’ is the externally applied electric field to keep the total plasma,
current constant. It is worthwhile to point out that the first term on the right hand side of
Eq. (7) represents so called dynamo effect that may "reorganize” local current density and
hence magnetic configuration including safety factor ¢ profile through plasma motion.

The basic idea here is that energy released in magnetic reconnection due to develop-
ment of tearing modes converts to plasma kinetic energy and thus drives sheared flow layers.
Therefore, the necessary condition for the mechanism to work is excitation of tearing in-
stability that may only be induced through dissipative effects such as resistivity or electron
viscosity in Ohm’s law and then in Eq. (7). On the other hand, ion viscosity may induce
momentum transfer to them. However, such transfer is valid only when there exists enough
momentum driven by such mechanism as tearing modes in the plasma. Ion viscosity does
not induce tearing modes but suppress them. As a result, ion viscosity is included here to
provide a saturation mechanism. In accordance with the parity of tearing mode structure,
assuming the perturbation potentials
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and -
¥ = 0Y(x,t) + Yl t) cos(nky), (10)
n=1

we obtain the following coupled quasi-linear equations from the first harmonic perturbation,

(i;s_;z; = l;((?l% +¢18¢1) ;(ng;o + a;j;b) ;{(ﬁﬁo + 8;2% +E (11
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Such a truncating as employed above may introduce unexpected errors. However, our new
results with more harmonics included (not shown in this work and will appear in a separate
work soon) indicate that the essential conclusions are not influenced except that the mode
reaches saturation due to effects introduced by nonlinear interaction between harmonics.
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3. Numerical results
Equations (11-13) are solved as an initial value problem - E’ is chosen such that the equilib-
rium does not dissipate due to resistivity and viscosity.

For the magnetic field, we employ the configuration used in Ref. 6,

Boy(z) =1 — (1 + b.)sech(Cz), (14)

where
Cz, = sech™[1/(1 + b.)]. (15)

The constant b, is chosen such that By (v;) = m/2. We do not need to specify By, (z)
and Py(x) since incompressible equations are used. The resistivity and the viscosity are
both assumed to be constant. The initial conditions for ¥ and ¢, are the linear eigen-
functions multiplied with a small number and 6¢(¢ = 0) = 0.[6] The boundary conditions
are 8¢ (x) = 861 /0x = 0, and the values provided by the initial conditions such as ¥, (z) =
01 /0x =0, ¢1(x) = 0¢1/0x = 0 for x = £x,,. The chosen parameters are k = 0.25, R =
105, S = 9.4 x 105, b, = 0.233509, z,, = 4, ¢ = 2.68298 corresponding to two rational
surfaces at © = xy = £0.25. The results are checked to be independent of x,,, the grid size
and the time-step. Total 501 grid points are used in the simulation domain [—z,,, +,] and
time-step is 5 x 10~* for the results given below.

The time evolutions of representative growth rate v = dln B,(z = 0,y = 0)/0t, the total
kinetic (the upper curve)

_1 2 2 _ 1 7 2 % i 2
E, = 2p/(vx + v, )dzdy = o /[(kgbl cos ky)” + ( 5, il ky)?|dxdy, (16)

and the magnetic energy

1 2 2 1 T 2, (0%
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in the simulation domain as functions of time are shown in Figs.1(a), 1(b) and 1(c),
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FIG. 1. Time evolutions of representative growth rate (a),
total kinetic (the upper curve) (b) and magnetic (¢) energies for R; = 0.
respectively. Here, the velocities are measured in units of the poloidal Alfvén velocity in the
last expression for Ej, while the magnetic fields are normalized to the poloidal field at plasma
boundary. The fact that the magnetic energy released in the reconnection process converts
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to kinetic energy is clearly demonstrated. In addition, the energy bounces forth and back
between the two states for a couple of times with decaying amplitudes and then goes into
a stage when the kinetic and magnetic energy linearly increases and decreases, respectively.
Another important fact is that the kinetic energy is almost completely from plasma motion
in y-direction. The kinetic energy due to the motion in z-direction is negligibly small as
shown by the lower straight line in Fig. 1(b). This means that the driven flow is mainly in
poloidal direction of a tokamak, as desired from turbulence suppression theory. Here and
afterward, the magnetic fields and the velocities are measured in units of poloidal field and
Alfvén velocity at plasma boundary, respectively.
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FIG. 2. Profiles of the amplitudes of (a) vy, (b) Ov,/0x and
(c) B, at t = 125 (the dotted lines) and 170 (the solid lines) for R; = 0.

In Fig. 2, the profiles of the amplitudes of (a) v,, (b) Ov,/0x, and (c¢) B, at t = 125
(the dotted lines) and 170 (the solid lines) are presented in the reconnection region which
is much smaller than the simulation domain (—4 S = S 4). Here, x is normalized to a, the
scale length in the radial direction. Two very important points emerge: 1) the amplitude of
the poloidal velocity v, reaches the level of poloidal Alfvén velocity, and 2) the flow v, and
flow shear duv,/0x are mainly located at the boundaries of the magnetic islands and remain
at noticeable levels for x & 0.5 where B, is negligibly small.
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FIG. 3. Time evolutions of representative growth rate (a),
total kinetic (the upper curve) (b) and magnetic (c) energies for R; = 10.

In Fig. 3, ion viscosity effects on the time evolutions of the representative growth rate
(a), the total kinetic (the upper curve) (b) and magnetic (c) energies for R; = 10° are
presented. The kinetic energy is a constant while the magnetic energy decreases slowly due
to ion viscosity after £ = 400. This is in strong contrast with the results in Fig. 1 where the

kinetic energy keeps increasing linearly.
In Fig. 4, the profiles of the amplitudes of (a) v, (b) dv,/dz, and (c¢) B, for R; = 10° are



presented in the reconnection region. Here the two solid lines are for at ¢ = 121, which is
the moment when the representative growth rate v = 0, (the lines with higher amplitudes)
and 800 when the mode is saturated (the lines with lower amplitudes), while the dotted
lines are for ¢t = 200, 300, 400, 500, 600, 700, respectively. It is clearly shown that he basic
characteristics of the profiles do not change from that pointed out above for the case without
ion viscosity. However, differences are still visible. Firstly, the profiles of v, and dv,/0x are
broader than that when ion viscosity is not taken into account. This is reasonable since the
ion viscosity introduces velocity diffusion. Second, the profile of B, is narrower due to the
consumption of the driving energy by the ion viscosity now. Of course, the most notable
difference is that the amplitude of the velocity shear is lower than that for R; = 0.
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FIG. 4. Profiles of the amplitudes of (a) vy, (b) Ov,/0x and
(¢) B, for R; = 103.
4. Conclusions and discussion

The magnetic energy released in the reconnection process converts to kinetic energy and
drive plasma flows in tokamak plasmas. In addition, the kinetic energy is almost completely
from plasma motion in y-direction, i.e., the driven flows are mainly in poloidal direction of
a tokamak, as required from turbulence suppression theory. Furthermore, the amplitude of
the poloidal velocity v, reaches the level of poloidal Alfvén velocity, and the flow v, and flow
shear Jv,/Ox are mainly located at the boundaries of the magnetic islands and remain at
noticeable levels for z 2 0.5 where B, is negligibly small. The SFLs formed at the boundaries
of the magnetic islands on both sides may leads to turbulence suppression and ITB formation
in these layers.

In conclusion, the electron viscosity induced double tearing mode is shown to generate
localized SFLs in RS plasmas. The nature and magnitude of the flows make the mode a
strong candidate for the triggering of I'TBs in such tokamak plasmas.

The electron fluid dynamic Reynolds number R, and generated velocity V,,, are estimated
as R~ 5x107 and V, oc R7Y% ~ 0.1v4 ~ 0.1vy for p1, ~ 10m? /s, p; = 0 and typical tokamak
discharge parameters [7]. The estimated viscous current penetration time, over a plasma of
scale length 0.1m, 7, ~ 3.5s then, does not contradict the experimental evidence [1].

It has to be pointed out that the sheared flows discussed here are periodic in the poloidal
direction not like the zonal flows that are constant. However, the suppression effects of
sheared flows are independent of the sign of the flows according the turbulence theory. There-
fore, the periodic property of the flows does not prohibit them from turbulence suppression.
In addition, the shearing rates of the sheared flows created by the tearing modes have not



to be higher than the maximum growth rate of the turbulence driving instability although
the values calculated are high enough. This is because that there may be other sheared flow
creation mechanisms working together with that discussed in this work. Actually, as ex-
periments have demonstrated that plasma confinements are improved when there are MHD
activities with appropriate amplitudes while the confinements are degraded even destroyed
when the MHD activities are too strong or violent [4]. This means that MHD activities have
to be controlled at appropriate level in order to let it benefit plasma confinement through
triggering I'TB formation.
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