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Abstract. Transport theory in toroidal devices often assumes large aspect ratio and also assumes the poloidal
�eld is small compared to the toroidal �eld. These assumptions result in transport which in the low collision
rate limit is dominated by banana orbits, giving the largest collisionless excursion of a particle from an initial
�ux surface. However in a small aspect ratio device the gyro radius may be larger than the banana excursion,

resulting in signi�cant deviations from the standard neoclassical predictions. In this paper we report numerical
simulation of di�usion in low and high beta low aspect ratio equilibria. We also sketch an analytic theory. The
di�usion, which we refer to as omniclassical, is a combination of neoclassical and properly averaged classical

e�ects, and can be two or three times the neoclassical value. Good agreement of the analytic theory with
numerical simulations is obtained.

In tokamaks with low aspect ratio (�spherical tori�) the transport rate predicted by a Lorentz (ie, full-
orbit) code GYROXY [1] is substantially larger than the rate computed using guiding-center (GC)
codes such as ORBIT. [2] The drift-kinetic equations used by GC codes are also the basis of standard
neoclassical theory [3,4], so the disparity between the GC and Lorentz results indicates that something
is missing in neoclassical theory, related to the e�ects of �nite gyroradius for devices with low aspect
ratio A ≡ R/a (R and a are the device major and minor radii), and larger ratios Bp/Bt of the poloidal
to toroidal magnetic �eld than those found in larger-A tokamaks. The total transport including these
new e�ects has been termed [5] �omniclassical transport.�

(a) (b)

FIG. 1. The double null discharge has Bφ(0) = 0.3T R = 0.86m and Ip = 1.2MA, βt = 35%. The single null
discharge has Bφ(0) = 0.45T and Ip = 0.8MA, βt = 15%.
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In this work, we report numerical simulations using the guiding center code ORBIT and the full Lorentz
code GYROXY, and provide an explanation for the omniclassical enhancement over the neoclassical
rates observed with the ORBIT code. The explanation is a generalization of the classical transport one
expects in a 1-dimensional (1D) or large-A (weakly 2D) system, where the di�usion coe�cient Dcl ' νρ2

g

is small compared with the neoclassical coe�cient Dnc ' ν(qρg)2/ε3/2 (with ν the collision frequency,
ρg the particle gyroradius, and ε ≡ A−1).

In the GC code, a collision operator C = C‖ is used which scatters only in pitch λ ≡ v‖/v⊥ ≡ v cos v,
where v is the particle speed, and v‖ and v⊥ are its components parallel and perpendicular to the
magnetic �eld B. This permits the particle �banana center� (bounce-averaged �ux surface label) x̄ to
wander di�usively. In GYROXY, as well as in the analytic calculation, C scatters not only in λ, but
also in gyrophase φv, C = C‖ + C⊥, providing a second statistically independent process by which x̄
can wander, enhancing the overall transport. The analytic theory �nds that the classical transport has
two contributions, one from scattering in λ, and a dominant contribution from scattering in φv. When
the collision operator in GYROXY is constrained to scatter only in λ, we �nd that the transport rate
drops toward that from ORBIT by an amount consistent with the theory.

Figure 1 shows two equilibria [6] in the National Spherical Torus Experiment [7] (NSTX) spherical torus.
The double null discharge is a high beta discharge, with a toroidal beta of 35 percent, with Bφ(0) = 0.3T
R = 0.86m and Ip = 1.2MA. The single null discharge has beta of 15 percent and Bφ(0) = 0.45T and
Ip = 0.8MA. Figure 2 shows two banana orbits in the high beta NSTX equilibrium of Fig. 1 and a
close up view of the banana near the outboard edge. The cyclotron excursion is much larger than the
guiding center banana width, and thus we expect neoclassical results to give an underestimation of the
transport. Note that the ratio of cyclotron width to banana width is independent of particle energy, ie
this is a result of �eld geometry, not high particle energy, and is in fact energy independent.

(a) (b)

FIG. 2. In (a) are shown two banana orbits in NSTX. In (b) is shown a blowup of the midplane section of
the banana orbit at larger minor radius. The black trace is the downward drifting part of the full orbit, Green
is the upward drifting part. Red dashed line is the gyro averaged orbit. The excursion is much larger than the
banana width.

The collision operator in the two representations is of course very di�erent. In the guiding center code
the pitch λ = v‖/v is changed each time step according to the Monte Carlo prescription [8]
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λ′ = λ(1− νdt)± ((1− λ2)νdt)1/2 (1)

where ν is the collision frequency, dt is the time step, and the plus or minus sign is chosen randomly.
This produces a Gaussian spread of the particle pitch while conserving energy. In GYROXY the velocity
vector is moved through an angle given by νdt on the surface of the sphere ~v = constant. In Fig. 3 is
shown a numerical con�rmation of the equivalence of these two operators, acting on a large distribution
of particles initially with pitch zero.

FIG. 3. Equivalence of the collision operators in the two representations. The black curve is from ORBIT and
the red curve from GYROXY. A collection of particles initially with zero pitch is acted upon by the collision
operator alone, with no motion in space, equilibrating in about one collision time. Shown is the mean squared
pitch for the distribution as a function of time.

The simulations are performed by loading a monoenergetic distribution of particles on a surface ψ0 (ψ
is the poloidal �ux/2π) uniformly in poloidal angle and pitch variable λ. Integrating the particle orbits,
D is computed from the Fokker-Planck expression D = (1/2)d/dt〈(δψ)2〉(t).
In Fig. 4 we plot 〈(δψ)2〉 (arbitrary units) versus time from GYROXY and ORBIT, for a high beta
equilibrium in the National Spherical Torus Experiment [7] (NSTX) spherical torus with a 100 eV
monoenergetic distribution launched on a surface ψ with maximum major radius X(ψ) = 140 cm. The
collision frequency used is 10−4ω0, with ω0 the cyclotron frequency, which is well within the banana
regime.

The top curve (a) is from GYROXY with full collision operator C = C‖ + C⊥, the bottom curve (c) is
from ORBIT, which has C‖ only, and the middle curve (b) is from GYROXY with C‖ only. One notes
that the slope of this curve has dropped most of the way from that of the full-C GYROXY curve to
the ORBIT curve, as indicated above. The rapid displacement from the �ux surface occuring initially
re�ects the mean square banana width in the case of ORBIT, and the much larger banana plus gyro
width for the upper two curves. We have also veri�ed the irrelevance of the distribution in energy by
reproducing the same results using a Maxwellian distribution.
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FIG. 4. Numerically observed spreading of initial particle distribution. Curve c shows the result using guiding
center motion only. Curve b shows the result with pitch angle scattering only. The initial large excursion is due
to the cyclotron excursions, and the slope of the long time motion gives the di�usion. Curve a is the result of
full cyclotron motion and a complete collision operator.

In Fig. 5 we plot the numerically obtained D/Dnc versus X(ψ) for the high beta equilibrium, where
Dnc is the GC result from ORBIT. The top curve (a) gives results using the full collision operator C,
and the bottom curve (b) with C constrained to C‖ only. Doing so removes about 3/4 of the disparity
between the GYROXY and ORBIT results.

FIG. 5. Numerical di�usion rates, normalized to the neoclassical value, for the high beta equilibrium. Curve
b shows the result of full cyclotron motion with pitch angle scattering only. Curve a is the result of full cyclotron
motion and a complete collision operator

To gain an analytic understanding of these results, we consider the di�usion of particles in the space
of the three constants of motion J, and in particular, di�usion in the banana-center �ux surface x̄. (A
typical choice for J, employed in the �action-angle formalism� [9], are the magnetic moment Jg, the
bounce action Jb, and the angular momentum pζ . For our limited purposes here, we shall only need to
make use of a small part of the machinery of this formalism.) One may de�ne x̄ using the conservation

of pζ ≡ eζ · p ≡ e
c
Aζ +Mvζ for collisionless orbits. Here, eζ = Rζ̂ is the contravariant basis vector for

toroidal azimuth ζ. We use a �ux coordinate system (x, , ζ), with x the �ux-surface label. The vector
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potential is given by A = Φ∇ − ψ∇ζ, with A(x) = Φ the toroidal �ux/2π, and Aζ(x) = −ψ. Thus,
pζ = −e

cψ+Mvζ , and for this reason, expressions are somewhat simpler if one adopts the choice x→ ψ,

which we now do. Since pζ is a constant of the motion, it equals its orbit-average p̄ζ = e
c ψ̄ +Mv̄ζ , and

thus

ψ̄ = − c
e
(pζ −Mv̄ζ) = ψ − c

e
M(vζ − v̄ζ). (2)

After a little geometry, one can write vζ in terms of the more conventional components v‖, v⊥ as

vζ = R(btv‖ + bpv⊥ cos φv) = Rv(btλ+ bp
√

1− λ2cosφv) ≡ vζ‖ + vζ⊥, (3)

where bt,p ≡ Bt,p/B, the ratio of the toroidal or poloidal to the total magnetic �eld.

For trapped particles (trapping-state index τ = 0), one has v̄ζ = 0. For passing particles (τ = 1),
¯vζ⊥ again vanishes under the gyro-average, while ¯vζ‖ ' vζ‖, an approximation improving for more
deeply-passing particles. Thus, in Eq. 2, one has

(vζ − v̄ζ) ' (1− τ )vζ‖ + vζ⊥. (4)

As in the GYROXY simulations, we adopt a collision operator which scatters in λ and φv, but not in
energy:

C ≡ C‖ + C⊥ ≡ (νv2/2)∇v · (I− v̂v̂) · ∇v = ν/2[∂λ(1− λ2)∂λ + (1− λ2)−1/2∂2
φv

]. (5)

C‖ is the usual Lorentz collision operator used in the drift-kinetic framework. Both C‖, C⊥ are self-
adjoint in (λ, φv) space: for any functions F,G,∫
d2vFC‖,⊥G =

∫
d2vGC‖,⊥F .

We compute the radial �ux of banana centers due to the action of C:
dt〈ψ̄〉 ≡ 〈Cψ̄〉, where dt is the collisionally-induced time derivative, and for any function F (z), 〈F 〉 ≡
V −1

∫
V
d6zfF is a phase-space integral (d6z = d3xd3p) of F weighted by distribution function f , over a

thin toroidal shell of volume V centered at �ux surface ψ. From Eq. 5, one has dt = d
‖
t + d⊥t , yielding

contributions to the �ux induced by C‖ and C⊥, respectively. From Eqs.2-5, one thus has

dt〈ψ̄〉 = (− c
e
M)dt〈(vζ − v̄ζ)〉 = (− c

e
M)〈(C‖ +C⊥)[(1− τ )vζ‖ + vζ⊥]〉, (6)

which one sees gives four terms, of which the term 〈C⊥(1 − τ )vζ‖〉 vanishes. The �rst term is the
neoclassical �ux, Γnc ≡ (− c

eM)〈(C‖(1− τ )vζ‖〉, while the remaining two yield the generalized classical
�ux, Γcl ≡ (− c

eM)〈(C‖ +C⊥)vζ⊥]〉.
To complete the calculation, we need an expression for the particle distribution f . Any function f =
f0(J) of J satis�es the Vlasov equation, so for low ν, a good collisionless approximation is the local
Maxwellian form f0(ψ̄, E) = n0/[2πTM ]3/2 exp(−E/T ), with n0 and T functions of ψ̄, and E ≡Mv2/2
the particle energy. Using ψ̄ = ψ − δψ, one has f0(ψ̄) ' f0(ψ) − δψ∂ψf0, where ∂ψf0 = −κf0,
with κ = κn + κT (v2/v2

T − 3)/2, κn ≡ −∂ψ lnn0 and κT ≡ −∂ψ lnT . From Eqs.2 and 4, δψ =
( ceM)((1 − τ )vζ‖ + vζ⊥) ≡ δψb + δψg, with δψg the gyro-orbit radial excursion, and δψb the (bounce-
related) radial drift excursion. Using these in Eq. 6, one �nds

dt〈ψ̄〉 = −V −1

∫
V

d6z∂ψf0
ν

2
(
c

e
MRv)2 ×

{(1− τ )b2t (1− λ2) + b2p[(1− 2λ2) +
√

1− λ2] cos2 φv} (7)

The integrations over λ and φv here are elementary, and those over and v may be done for speci�c
models. Setting κT = 0 to extract only the diagonal term Dψ of the transport matrix, we �nd from Eq.
7

dt〈ψ̄〉 = −∂ψn0[D̄ψ
nc(ψ) + D̄ψ

cl(ψ)] = κnV
−1

∫
V

d6zf0[Dψ
nc(v,x) +Dψ

cl(v,x)], (8)
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where Dψ
nc(v,x) = 1

2νρ
2
g(BtR)2(1− B/Bπ)1/2, and

Dψ
cl(v,x) = 1

4 (1
3 + π

2 )νρ2
g(BpR)2 are the neoclassical and generalized classical di�usion coe�cients,

which must be integrated over and v to obtain the averaged coe�cients. Here, Bπ ≡ B(ψ, = π) is the
maximum value of B on surface ψ. The factor 1

3 in Dψ
cl is the contribution from the term C‖vζ⊥ in Eq.

6, which is a new term, not present in the classical scattering expressions. The dominant factor π
2
is from

the term C⊥vζ⊥, which is the generalization of the usual "classical" contribution, with the appropriate
factor (BpR)2 to be used in the �ux surface average. Thus, removing C⊥ from the GYROXY simulation
should remove most of the enhancement of D over Dnc, as seen in Fig. 5. The dominant contribution
from this approximate theory is about π

2
/(1

3
+ π

2
) ' 82% of Dcl, while the factor in Fig. 5 is about 70%.

Note that ratios of these quantities are independent of particle energy, being due to equilibrium �eld
geometry, and thus these results apply to heat transport as well as particle transport.

We put these di�usion coe�cients in a more familiar form by transforming from ψ to a �ux function
r(ψ) having units of length, which approximates an average minor radius. One has dt〈r̄〉 = −∂rn0D̄

r,

with D̄r = (∂ψr)2D̄ψ , and similarly for Dr. Taking r ≡ √
2Φ/B0, with B0 the toroidal �eld strength

on the magnetic axis, one has (∂ψr) = (q/B0r), and thus

Dr
nc(v,x) = 1

2ν(ρgq)
2(BtR/B0r)2(1−B/Bπ)1/2, and

Dr
cl(v,x) = 1

4
(1
3

+ π
2
)νρ2

g(qBpR/B0r)2.
The θ-dependences in these expressions lie in ρg, (1 − B/Bπ), and BpR. For a small-ε device, ρg '
const,

∮
d
2π

(1−B/Bπ)1/2 ' 2
π

√
2ε, (BtR/B0r)2 ' 1/ε2, and (qBpR/B0r)2 ' 1, resulting in the familiar

dependences

Dr
nc(v,x) ' σncν(ρgq)2/ε3/2 and Dr

cl(v,x) ' σclνρ
2
g, with numerical coe�cients σnc =

√
2
π , and σcl =

1
4
(1
3

+ π
2
).

(a)

FIG. 6. Analytic di�usion rates, normalized to the neoclassical value, Curve b shows the result of full cyclotron
motion with pitch angle scattering only. Curve a is the result of full cyclotron motion and a complete collision
operator.

In Fig. 6 is shown the average of these expressions using the NSTX geometry to compute the analytic
counterparts of the numerical results. One notes the approximate agreement of the numerical results in
Fig. 5 and the analytic results.

Finally, to display the dependence on the equilibrium beta, in Fig. 7 are shown the numerical and ana-
lytic results using the full collision operator for both the low beta and the high beta NSTX equilibrium.



7 IAEA-CN-04/TH/P2-19

FIG. 7. Numerical (black triangles) and analytic (red squares) di�usion rates, normalized to the neoclassical
value, for the high beta equilibrium (1), and the low beta equilibrium (2).

1. Summary

Summarizing, we have performed numerical simulations of di�usion using guiding center and full Lorentz
codes, and provided an explanation for the omniclassical enhancement of the total transport over neo-
classical rates. We developed an approximate transport theory which predicts the enhancement of the
transport over neoclassical given by the full-orbit GYROXY code with full collision operator, and dis-
plays the two parts of the �nite-gyroradius transport due to pitch angle scattering and gyro phase scat-
tering. The enhancement comes from a generalization to strongly 2D geometries of classical transport,
which for low-A con�gurations like NSTX can dominate over the neoclassical contribution. The domi-
nant contribution of the cyclotron motion is from the gyro phase scattering, but there is also a sizeable
contribution from pitch angle scattering. This result indicates that the use of neoclassical expressions
to calculate particle and energy loss in devices such as NSTX can lead to signi�cant underestimation of
these processes.
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