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Abstract. Modeling and detailed simulation of neoclassical transport phenomena both in 2D and 3D
toroidal configurations are shown. The emphasis is put on the effect of finiteness of the drift-orbit width,
which brings a non-local nature to neoclassical transport phenomena. Evolution of the self-consistent
radial electric field in the framework of neoclassical transport is also investigated. The combination of
Monte-Carlo calculation for ion transport and numerical solver of ripple-averaged kinetic equation for
electrons makes it possible to calculate neoclassical fluxes and the time evolution of the radial electric
field in the whole plasma region, including the finite-orbit-width(FOW) effects and global evolution of
geodesic acoustic mode (GAM). The simulation results show that the heat conductivity around the mag-
netic axis is smaller than that obtained from standard neoclassical theory and that the evolution of GAM
oscillation on each flux surface is coupled with other surfaces if the FOW effect is significant. A global
simulation of radial electric field evolution in a non-axisymmetric plasma is also shown.

1. Introduction

Neoclassical(NC) transport theory has been successfully established under the assumption
of the local transport model(small-orbit-width (SOW) limit)[1,2]. However, there are some
cases in recent experiments where the assumption is not valid, for example, at the internal
transport barrier(ITB) and in the core region of tokamak where potato orbits[3] appear.
The potato width becomes several tens % of the plasma minor radius in a reversed-shear
configuration, and to evaluate transport level in such cases the finite-orbit-width(FOW)
effect of trapped particles should be considered. Neoclassical transport theory for 3-
dimensional stellarator configurations has also been considered in the SOW-limit[4,5]. The
drift orbits in stellarators are much complicated compared to those in tokamaks. Though
the orbit widths of ripple-trapped particles are small, transit particles in stellarators
have large orbit scales, and energetic particles trapped helically are easy to lose from the
confinement region. In order to take account of those particles in NC transport calculation,
conventional analytical method is hard to apply, and global properties of particle motion
should be taken into account.

Another interest in recent study on NC transport is the formation of the radial electric
field Er. Since the lowest-order NC flux is intrinsic ambipolar in tokamaks, the higher-
order terms appeared from the FOW effect must be retained to evaluate the time evolution
of Er. In stellarators, the radial flux is non-ambipolar even in the lowest order. Because
NC fluxes in non-axisymmetric plasmas are sensitive to electric field, determination of
the self-consistent ambipolar electric field is one of the main task of neoclassical theory.
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However, the role of the FOW effects in the evolution of radial electric field has not been
investigated in detail.

To carry out a general and detailed research on neoclassical transport phenomena
including the finite-orbit-width effects and radial electric field, we develop a numerical
transport simulation code FORTEC-3D using the δf Monte-Carlo method[6,7]. It solves
the time evolution of neoclassical fluxes as well as the self-consistent radial electric field, in
multidimensional MHD equilibrium configurations obtained from VMEC[8]. The original
FORTEC has been developed to solve NC transport for ions in tokamaks, in which the
electron particle flux Γe is negligible to determine ambipolar Er. In non-axisymmetric
cases Γe is comparable to Γi and is needed to calculate the evolution of ambipolar electric
field. To reduce the time consumption for simulation, we adopt a hybrid model. While the
ion transport is solved by the δf method, the electron flux is obtained from GSRAKE[9],
a numerical solver of ripple-averaged kinetic equation. Thus FORTEC-3D enables us to
investigate neoclassical transport and the evolution of radial electric field including the
FOW effects of ions in general 3D configurations, from a microscopic point of view.

The remainder of the paper is organized as follows. In Sec. 2, formulation of δf
Monte-Carlo method and our simulation modeling are explained. In Sec. 3, NC transport
simulation in a tokamak configuration is shown. It is shown that the geodesic-acoustic-
mode (GAM) oscillation in tokamak is affected by the FOW effects. The evolution of
Er on each flux surface is found to be coupled if the banana width is large. Effects of
potato particles on transport are also shown. We have developed an extended transport
theory including the FOW effects[10]. From the new neoclassical theory we show that the
potato orbits around the axis plays an important role to the decreasing tendency of ion
heat conductivity around the magnetic axis. In Sec. 3, a test calculation of NC transport
in a LHD-like configuration in combination with GSRAKE is presented. The relaxation
process of GAM oscillation toward ambipolar steady state is simulated precisely.

2. Simulation model

Consider a general toroidal plasma in the magnetic coordinates (ρ, θ, ζ), where ρ =
√

ψ/ψa

is a normalized radial coordinate and ψa is the toroidal flux label on the boundary. To solve
the time development of a plasma distribution function in the phase space (ρ, θ, ζ,K =
v2, µ = mv2

⊥/2B), the linearized drift kinetic equation

Dδf

Dt
≡

[
∂

∂t
+ K̇ ∂

∂K + (v‖ + vd) · ∇ − Ctp( , fM)

]
δf = −vd ·

(
∇fM − eEρ

T

)
fM + PfM (1)

is considered. Here, Eρ = −dΦ/dρ∇ρ is radial electric field, vd is the drift velocity of a
guiding center, and fM = fM(ρ,K) is Maxwellian of a flux-surface function. The linearized
test-particle collision operator Ctp is implemented numerically as a random kick in the
velocity space. The field-particle collision operator PfM is defined so as to satisfy the
conservation lows for collision operator

∫
(Ctp + PfM)M{0,1,2}dv = 0, (2)
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where M0 = 1, M1 = v, and M2 = K, respectively[11]. The use of the operator
which acts correctly as the linearized Fokker-Planck collision term is an advantage of our
code to apply it to general toroidal geometry. Because of the break of the momentum-
conservation low, it is known that the pitch-angle scattering operator, though it is a good
approximation for neoclassical theory in helical systems, cannot be simply applied to the
transport analysis in axisymmetric plasmas[12]. Note also that in the δf formulation,
the FOW effect is included in the term vd · ∇δf , which is usually dropped in standard
local transport models. We adopted the 2-weight scheme[6] to solve eq. (1) by Monte-
Carlo method. Two weights w and p which satisfy the relation wg = δf, pg = fM

are introduced, where g is the distribution function of simulation markers. Each marker
follows the track in the phase space according to the lhs of eq. (1), that is, Dg/Dt = 0 is
satisfied. Then the problem is reduced to solve the evolution of weights for each markers

ẇ =
p

fM

[
−vd ·

(
∇− eEρ

T

)
+ P

]
fM , (3)

ṗ =
p

fM

vd ·
(
∇− eEρ

T

)
fM . (4)

We have also adopted a weight averaging technique to suppress the dispersion spreading
of the weight fields[13].

The self-consistent evolution of the radial electric field is solved according to
(
〈|∇ρ|2〉+

〈
c2

v2
A

|∇ρ|2
〉)

ε0
∂Eρ(ρ, t)

∂t
= −e (ZiΓ

neo
i − Γneo

e ) , (5)

where the ion particle flux is obtained from Γneo
i = 〈∫ d3v ρ̇ δfi〉. In tokamak cases, Γneo

e

is negligible since |Γe/Γi| ∼ O(
√

me/mi). In non-axisymmetric cases, however, Γneo
e is

comparable to Γneo
i and the balance between these two fluxes determines the ambipolar Er.

Since ion and electron fluxes are strongly dependent on Er in the collisionless 1/ν regime
and the ambipolar condition Γi(Er) = Γe(Er) sometimes has a multiple solution, we need
a proper evaluation for Γe as well as Γi in order to investigate important phenomena
in NC transport in stellarators such as time evolution and bifurcation of electric field.
However, solving both ion and electron transport by δf scheme is not practical way
because the orbit time scales of two species are too separated, and because it is expected
that the FOW effect on transport is significant only for ions. In FORTEC-3D only the
ion part is solved by using the δf method. The table of Γe(Eρ, ρ) for a given profile is
prepared by GSRAKE, and Γe is referred from the table at each time step in solving eq.
(5) in FORTEC-3D. GSRAKE is designed to give a general solution for ripple-averaged
kinetic equation. The solution is valid throughout the entire long-mean-free-path (LMFP)
regime. It is applicable to general, multi-helicity 3-dimensional configurations in which
the magnetic field strength is given in a form

B = B0 +
∞∑

n=0

B0,n(ρ) cos nζ +
∞∑

m=1

∞∑
n=−∞

Bm,n(ρ) cos(nζ −mθ). (6)

In our simulation system, the table of Fourier components of B are extracted from MHD
equilibrium field solved by VMEC, and it is transfered to FORTEC-3D and GSRAKE. The
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adaptability of GSRAKE to transport calculation in LHD plasmas has been benchmarked
by comparing other numerical codes or analytical expressions previously[9].

Adopting the hybrid model, our simulation system is capable of solving neoclassical
transport in general 2D and 3D configurations without missing the important role of the
FOW effects of ions, within a practical calculation time. A typical simulation using 50
million markers in 3D configuration takes 20 hours to run a simulation to reach a steady
state solution. It also enables us to investigate neoclassical transport dynamics in the
whole plasma region from a microscopic point of view. The issues to be interested in with
FORTEC-3D code are (1) the FOW effects on neoclassical transport (2) the propagation
and damping of GAM oscillation in the entire plasma region (3) the effects of direct orbit-
loss or some external sources and (4) precise simulation of the bifurcation phenomena and
evolution of ambipolar Er field in non-axisymmetric systems. In the following chapter our
recent simulation results in tokamak and a LHD-like configuration are shown.

3. Transport simulation in 2D configurations

It has been revealed that the NC ion heat conductivity χi calculated by Monte-Carlo
method decreases in the near-axis region of tokamaks[6,14,15]. To explain this, we have
developed a new transport formulation for axisymmetric plasma to include the large-
scale orbital properties of potato particles into NC theory[10]. It is based on Lagrangian
description of drift-kinetic equation[16], in which the kinetic equation is solved in the
phase space of the constants of motion (E , µ, 〈ψ〉) in the collisionless limit. Here, E is the
total energy, µ is the magnetic moment, and 〈ψ〉 is averaged radial position of guiding-
center motion. The reduced drift-kinetic equation for the averaged distribution function
f̄(z) = f̄(E , µ, 〈ψ〉) is as follows

∂f̄

∂t
=

1

Jc

∂

∂z
· Jc

ν(E , 〈ψ〉)
2

[〈
∂z

∂v
· V · ∂z

∂v

〉
∂f̄

∂z
−

〈
mu‖
T

∂z

∂v
·wfM

〉]
(7)

where V(v) = v2I − vv, w = v2b − v‖v, ν is collision frequency, and Jc is Jacobian.
The rhs of eq.(7) describes the orbit-averaged collision operator, and 〈· · · 〉 is the orbit
averaging operator. This equation can be interpreted as a description of the diffusion
process of averaged radial position of particles by collisions. Since the orbit average
is taken along real orbit, orbital properties of fat potato particles are included in the
formulation. Equation (7) is solved by expanding f̄ = f̄0 + f̄1 + · · · and calculate the
non-vanishing lowest order ∂f̄/∂t in the second order. The final solution is obtained in
the form of transport coefficients in an usual manner such as Di and χi. The details of
how to solve eq. (7) numerically is summarized in [10].

Typical potato orbit width is estimated as ∆p ∼ (q2ρ2
i R0)

1/3, where ρi is ion Larmor
radius. Therefore, ∆p becomes larger in reversed-shear configuration where q À 1 around
the magnetic axis. To see the dependence of χi on ∆p we show in Fig. 1 the example of
calculation of χi in two configurations, one is a normal-shear case qaxis = 1.5, qedge = 4
and ∆p ' 0.08, and the other is a reversed-shear case qaxis = 8, qmin = 1.5 at r = 0.5,
qedge = 4, and ∆p ' 0.18 respectively. The results are compared with the fitting formula
of neoclassical theory in the standard local analysis[17], and the result from FORTEC-3D
for the reversed-shear case. As shown in other Monte-Carlo simulations, χi obtained from
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Lagrangian theory decreases in the near-axis region and the decreasing region width is
proportional to ∆p. The FORTEC calculation shows qualitatively the same decreasing
tendency of χi though it is somewhat weaker compared with Lagrangian theory. In
conclusion, the reduction of χi around the magnetic axis can be explained by the existence
of potato particles which is not considered in standard neoclassical theory.

Next example is GAM oscillation and damping. By a similar mechanism of Landau
damping, GAM damps if q ' 1. Though the damping occurs even in the local transport
model as in [18] by solving the kinetic equation only on the sole flux surface, the oscillation
of Er on neighboring surfaces are expected to couple through the particle motion passing
these surfaces. The simulation results by FORTEC-3D are shown in Fig. 2 and 3 for
a reversed-shear configuration qaxis = 3, qmin = 1.2 at r = 0.5, and qedge = 8, varying
banana width by changing B and Ti. A strong coupling effect can be seen in large-width
case where the damping of Er oscillation occurred on the resonant surface r ∼ 0.5 affects
the time evolution of Er on inner and outer surfaces. On the other hand, GAM oscillation
on each flux surface seems to be decoupled in the small-width case. The beat patterns
of the oscillation amplitude seen in these figures are also explained by the coupling effect
of GAM oscillation because the GAM frequency varies in space proportional to thermal
velocity on each surfaces. Thus the global evolution of GAM oscillation is found to have
a non-local dependency if the orbit scale is large.

4. Transport simulation in 3D configurations

As a benchmark of our hybrid model combining FORTEC-3D and GSRAKE, we show
here a simulation results in a LHD-like configuration . The simulation parameters are
Raxis = 3.7m, βaxis = 0.08%, B0 = 1.6T , and whole plasma region is well in the LMFP
(plateau - 1/ν) regime. The table of Γe(Eρ, ρ) calculated from GSRAKE is shown in
Fig. 4. By referring the table, FORTEC-3D solves time evolution of radial electric field
and neoclassical transport for ions. In Fig. 5, the contour plot of radial electric field
in the (ρ, t) plane is shown. The ι profile is monotonically increasing and it has ι = 1
surface at ρ ' 0.8. GAM ocsillation is strongly damped there and never appears at
ρ > 0.8, while the oscillation sustains long time at the inner region. Therefore, the
relaxation time scale of Er and Γi to a steady, ambipolar state varies in radial direction
depending on the rotational transform profile. The ambipolar electric field at the steady
state is shown in Fig. 6. In GSRAKE we can calculate Γi as well as Γe and ambipolar
electric field can be predicted by seeking the roots satisfies Γe = Γi. It is also shown in
Fig. 6. In the present case only one negative root is found in the entire region. These
two simulation results show a little different ambipolar Er. The ion flux calculated in
FORTEC-3D contains several effects which is neglected in calculating Γi in GSRAKE
such as the FOW effects, neoclassical polarization drift in a time-dependent field, energy-
scattering in collision term, and orbit loss at the boundary, etc. These differences are
considered to be attributed to the difference in Γi(FORTEC-3D) and Γi(GSRAKE) as
large as several tens % seen in the simulation result, and it leads to the difference in the
ambipolar electric field profile.
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5. Summary

We have developed a global neoclassical transport simulation code FORTEC-3D which is
applicable both to axisymmetric and non-axisymmetric toroidal configurations including
the finite-orbit-width effect and self-consistent time evolution of radial electric field. By
using it, we have demonstrated several transport phenomena which contains non-local
effects both in tokamak and stellarator plasmas. It is a promissing tool to investigate
non-local transport phenomena and global transport dynamics. We are planning to uti-
lize the simulation system to reveal the non-local process in the evolution of ambipolar
electric field in LHD plasmas including the bifurcation phenomenon.
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FIG. 1: χi calculated in normal and reversed
shear configurations from Lagrangian neoclas-
sical theory. Dotted lines are fitting formula
by Chang and Hinton. The line with diamonds
is a result from FORTEC-3D.
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FIG. 2: Time evolution of Er on three
radial positions in a reversed-shear tokamak,
qmin = 1.2 at r = 0.5. The typical banana
orbit width ∆r ∼ 10 cm.
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FIG. 3: Time evolution of Er in the same
configuration as in Fig. 1 but ∆r is about 1/3
times narrower by changing the strength of
B-field and ion temperature.

FIG. 4: Electron particle flux in a LHD-like
configuration from GSRAKE.
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FIG. 5: Time evolution of Er in a LHD-
like configuration calculated by coupling
FORTEC-3D and GSRAKE.
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FIG. 6: Comparison of ambipolar electric
field profile. Open circles are predicted from
GSRAKE and diamonds are the result from
FORTEC-3D when it reached a steady state.
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