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Abstract.  A theory for the early non-linear evolution of ballooning modes is developed for tokamaks from an
ideal magneto-hydrodynamic model of the plasma. The solution procedure depends on the Mercier stability
parameter, which, in turn, depends on the shaping of the tokamak plasma: three different regimes are identified.
The theory predicts that when the pressure pedestal is close to linear marginal stability, the ballooning mode will
grow explosively, driven by non-linear terms, which act to weaken the field line bending. The mode structure
evolves to form a number of hot plasma filaments that are ejected into the scrape-off layer on the outboard side,
but remain connected into the core plasma on the inboard side. Initial results from large-scale simulations show
features that are consistent with such structures. Possible mechanisms for how the filaments could lead to heat
and particle loss during the ELM are proposed.

1. Introduction

The size of edge-localised modes, or ELMs, on ITER remains one of the most important
issues for the design of the device. These repetitive, explosive events are associated with the
edge transport barrier of H-mode plasmas, and can result in large transient heat loads on the
target plates. They are a serious concern for ITER because they could possibly prevent
operation with the best performance plasmas, which typically have the largest ELMs. Each
individual ELM event is thought to involve a complicated interaction between magneto-
hydrodynamic (MHD) processes and turbulent transport processes. While there has been good
progress in developing a model for the trigger for the ELM based on linear ideal MHD theory
[1,2,3], there has been relatively little progress with identifying a quantitative model for the
energy loss during an ELM. As a step in this direction, we have developed a theory for the
early non-linear evolution of the ballooning mode instability [4,5]. This theory, described in
Section 2, predicts that hot filaments of plasma will form, and be ejected from the plasma on
the outboard (low field) side, while remaining connected into the hot core plasma on the
inboard side. The two-fluid MHD code, BOUT [6], has also been used to predict the non-
linear nature of instabilities associated with the plasma edge region [7]. There are similarities
with the theory presented here, which we demonstrate in Section 3. In order to understand the
loss of heat and particles during an ELM, it is necessary to go beyond ideal MHD. We close
in Section 4 with a discussion of possible models to be developed further which could in
principle lead to heat and particle transport, providing the final ingredient for a complete,
predictive model for the ELM cycle.

2. Non-linear ballooning mode theory

The details of the calculation have been presented previously [4,5], so here we limit ourselves
to a brief description of the important elements of the theory. We then discuss the method of
solution of the resulting non-linear equation describing the evolution of the mode structure in
the two directions perpendicular to the magnetic field lines.
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Our starting point is the full, non-linear, ideal MHD force-balance equation in Lagrangian
coordinates. We write the Lagrangian displacement, ξ, in terms of three components:

0|| Bee ξ+ξ+ξ= ∧α⊥ψξ (1)
where e⊥=∇α×b, e∧=b×∇ψ, B0=∇ψ×∇α, B0 is the equilibrium magnetic field, ψ is the
poloidal flux and α is a helical angle which labels particular magnetic field lines on a given
flux surface. The vector b=B0/B0 is a unit vector in the magnetic field direction. We work
with the variables ψ, α, and θ, where θ is a poloidal angle, measuring the distance along a
field line (taken to be effectively infinitely long).
In order to simplify the non-linear equations, we employ a small parameter, ε, which
characterises the mode structure. We anticipate an ordering guided by the results of linear
ballooning theory, which is likely to be appropriate provided we are sufficiently close to the
linear regime:

2

,

1

,

0

,

~     ,~     ,~ −

θψ

−

θαψα

ε
α∂
∂

ε
ψ∂
∂

ε
θ∂

∂ (2)

Anticipating leading order cancellations in ∇⋅ξ, we order ξ||∼ξψ and ξα∼εξψ, with an absolute
ordering ξψ∼ε2 to avoid shocks. Finally, in order to introduce time dependence in the highest
order equations, we assume ∂/∂t~ε2/λ, where λ=λS−λL is the difference between the two
Mercier indices [λS,L=1/2±(1/4-DM)1/2, with DM the Mercier coefficient].
As we develop the expansion in ε, we find that the perturbation is incompressible to the first
three orders. From the second order force balance equation, we deduce that ξψ satisfies the
standard, linear ballooning equation. Neglecting inertia, the solution can then be written in the
form

( ) );(,,ˆ)2( µθαψξ=ξψ Ht (3)
where H(θ) is the solution to the marginally stable ballooning equation (the superfix denotes
the order in ε). The parameter µ is introduced as a scaling factor on the curvature drive term in
the ballooning equation and serves as an eigenvalue (which will be close to unity, provided
the equilibrium is close to marginal stability). The small corrections ~(µ−1) will be re-
introduced in the higher order equations. Note that (µ−1) provides a measure of how close the
equilibrium is to marginal stability. Both H and µ have a slow variation with ψ (ie on the
equilibrium length scale ~ε0).
Before proceeding, let us digress to consider the implications of Eq (3). The condition that
inertia can be dropped requires θ∂/∂t<<1. Thus, sufficiently far along the field line, where
θ∂/∂t~1, inertia has an O(1) contribution and cannot be treated perturbatively. The solution Eq
(3), which neglects inertia, is therefore not valid in this region, and it will be necessary to
develop a new procedure in the region far along the field line. This is the first important point.
A second important point can be illustrated by considering the behaviour of H far along the
field line, such that θ>>1, but θ∂/∂t<<1 so inertia is not important. In this region, we deduce
|e⊥|ξψ~θ1−λs. Thus, provided the shaping is sufficiently strong that λs>1, the amplitude of the
perturbation decays with distance along the field line. Non-linearities are therefore not
important in the region θ∂/∂t>1, which we shall refer to as the “inertial” region. Thus, for λ>1
the problem can be split into two separate calculations: (1) to evaluate the perturbation in the
“ideal” region, where inertia can be treated perturbatively but non-linearities are important,
and (2) to evaluate the solution in the “inertial” region, where non-linearities can be
neglected. The solution is completed by matching the results of these calculations in the
“matching region” θ>>1, θ∂/∂t<<1 (see Fig 1).
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FIG. 1.  Sketch of a typical solution to the ballooning equation
showing the “ideal” and “inertial” regions

Let us now consider this matching procedure. In general, if one is not precisely at marginal
stability, the solution in the matching region is a linear combination of the large and small
Mercier solutions:
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where a and ∆′ represent the two constants of integration arising from the solution of the
ballooning equation (a 2nd order ODE). In the “ideal” region the boundary condition that
determines ∆′ is that it must have the same value for both positive and negative θ. Thus, ∆′
can be calculated from the “ideal” region alone, and embodies all the non-linearities (when
λs>1) . An analagous quantity is identified in the “inertial” region, and depends on the inertia
(for more complete plasma models, it could also describe the effects of resistivity,
diamagnetic effects, etc). Matching the two results for ∆′ provides the complete evolution
equation. There is one final subtlety. In the linear theory, the inertial region provides a
contribution to the inertia ~γλ, while the contribution from the “ideal” region would be ~γ2,
where γ is the linear growth rate.  Thus, if λ>2 (ie DM<−3/4) the dominant contribution to the
inertia actually comes from the ideal region, and the inertial region plays no essential role. In
this case, it is sufficient to neglect the inertial region and apply a “line-tied” boundary
condition far along the field line. The theory is then exactly as described by Hurricane et al
[8]. However, if 1<λ<2, the inertial region does provide the dominant contribution to the
inertia, and its effect cannot be neglected. Here, we develop the theory for this regime, which
is often the most relevant at the plasma edge.
To summarise, we have identified three regions of parameter space. (1) For λ>2 the “ideal”
region contains the dominant non-linearities and the dominant contribution to the inertia. The
“inertial” region far along the field line can be neglected, and the theory developed in [8] is
appropriate. (2) For 1<λ<2, the “ideal” region contains the dominant non-linearieties, but the
dominant contribution for the inertia comes from the “inertial” region. This is the theory
presented here. (3) For λ<1, relevant only in the tokamak plasma core, both the non-linearities
and the inertia are dominant in the “inertial” region. We leave this region for future work.
Let us now return to derive the solution in the “ideal” region. It is necessary to develop the
expansion to two higher orders in ε to evaluate ξ̂ (ψ, α, t) (see Eq (3)). These provide a non-
linear equation for ξψ

(4). After much algebra, one can show that the large θ limit of the
solution simply adds a component of the “large” solution (ie ~θ−λL) to the “small” solution (ie
~θ−λS) contained in ξψ

(2) (through H). By integrating out to large θ, across the full ideal region,
and identifying ∆′ as the ratio of coefficients of small to large solutions (see Eq (4)), we
derive the following expression from the ideal region:
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where we have written ∂u/∂α≡ξ and the over-bar denotes an integral over α. The parameter θ0
is the parameter familiar from linear ballooning theory, and is chosen so as to minimise µ.
The coefficients Cj represent integrals over θ across the ideal region of functions involving
equilibrium quantities and the solution to the linear ballooning equation, H. For λ>1, the
contribution of the inertial region to these integrals is negligible, and then they can be
integrated over the full range −∞<θ<∞.
Turning now to the inertial region, the linearised equations are conveniently solved by
employing a Laplace transform in time. The procedure then follows the standard linear
analysis, with the Laplace variable, p, taking the place of the linear growth rate γ. This allows
∆′ to be identified. Following analytic inversion of the Laplace transform, the solution for ∆′
from the inertial region is:

( ) 








′−

′ψαξ′
α∂
∂

∂
∂

=
α∂
ψαξ∂

∆′ −λ∫ 102

2

0
),,(ˆ),,(ˆ1

tt
ttd

t
Ct t

(6)

Matching the two expressions for ∆′ then provides our final evolution equation:
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We have absorbed the coefficients Cj into a re-definition of the variables. Let us consider each
term in turn. The first square-bracketed term on the right hand side is the contribution from
the standard linear drive, composed of a piece reflecting the linear drive, and a piece
reflecting the finite toroidal mode number stabilising term. The second term provides an
additional non-linear drive. The third term is a cubic non-linearity, which is negative
(stabilising) in the region of ψ where u is a maximum, and positive elsewhere. Thus, the
effect of this term is to stabilise the linearly unstable region (ie that where µ(ψ)<1) and
destabilise flux surfaces in the linearly stable region. Thus, this term has the effect of
“spreading” the region affected by the instability in the radial direction. The term on the left is
interesting. It is a formal representation of the fractional derivative ∂λ/∂tλ. Recall that we
argued earlier that the theory of Hurricane et al [8] is relevant when λ>2. In this case one
obtains precisely Eq (7) (but with different coefficients), except that the term on the left hand
side is simply ∂2u/∂t2. Thus our result matches smoothly onto the Hurricane result as λ passes
through 2.
Before we consider numerical solutions to Eq (7), we can deduce certain properties of the
solution analytically. To derive how non-linearities affect the drive, we suppose we are in the
regime where the non-linear terms dominate the linear ones, and balance the inertia against
the quadratic non-linearity. This provides the result that

rtt )),((
1~ˆ

0 −ψα
ξ (8)

where r=λ for 1<λ<2, and r=2 for λ>2 (the Hurricane result [8]). Note that there is a finite-
time singularity at the time t=t0, where t0 depends on the initial conditions. As one approaches
this time, the mode grows explosively, even when the equilibrium profiles are maintained
close to the linear marginally stable values (ie where the linear growth rate would be small).
Note also that the mode amplitude grows fastest close to where t0 is a minimum, and therefore
this would suggest there is a narrowing of the structure about this position. However, this is
not the full picture. To understand the mode structure perpendicular to the field lines in more
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detail, let us balance the two non-linear terms. This provides a relationship between the
widths in the two directions perpendicular to the magnetic field line:

( )
( )rtt −α∆

ψ∆

0

2 1~ (9)

Thus, while there is a tendency for the mode to narrow in the α direction, it tends to spread
more in the radial direction into the region which is linearly stable.
Let us now turn to the numerical solution of Eq (7). We first reduce this equation to the
following system:
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We solve these by first specifying “initial” conditions at t=0. The condition we impose is that
the solution for ξ at all times t<0 is the linear eigenmode, which has been growing
exponentially with the linear growth rate. In addition, the amplitude of ξ is taken to be
sufficiently small at t=0 that the non-linear terms are negligible compared to the linear ones.
From Eqs (10) and (11) we can then evaluate solutions for y(t=0) and h(t=0).
Knowing y and h at any time t=ti, and ξ for all times t≤ti, we advance the system to t=ti+1 as
follows. First, we advance h and y from Eq (10) using a standard explicit scheme. Knowing
these allows us to the advance ξ by inverting the integral in Eq (11). Because the integrand is
divergent at t′=ti+1 (though the integral is not), care has to be taken to preserve accuracy in the
solution. Thus, we separate the integral into an integral up to ti and an integral from ti up to
ti+1. We derive an accurate approximation for the integral from ti to ti+1 by Taylor expanding ξ
about t=(ti+1+ti)/2, and then performing the integral analytically. After some straightforward
algebra, we arrive at the result:
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where Γ≡Γ(2-λ) is a Gamma function. An interesting feature of this result is the appearance of
a fractional power of the time step, ∆t=ti+1−ti, reflecting the fact that this expression is derived
from a fractional derivative. Note, there remains an integral to be performed numerically over
all previous times. We have chosen to express the solution in this way, adding and subtracting
contributions from yi, so that there is a leading order cancellation between the two terms in
square brackets for times t′<<ti+1 and then the integrand becomes negligible. This improves
the efficiency of the numerical scheme somewhat as it reduces the effective range that the
integral has to be performed over (note that this integral needs to be computed at each spatial
mesh point). The integral is evaluated between successive time mesh points by Taylor
expanding ξ(t′) about the mid-point of the two mesh points, and performing the remaining
integral between the mesh points analytically. This procedure is much more accurate than
simply Taylor expanding the whole integrand, particularly as one approaches t′=t.
We have evaluated the solution of Eq (7) for λ=1.6 using the above procedure. The
instantaneous growth rate, defined by γ(t)=(1/ξ) ∂ξ/∂t, is shown as a function of time by the
full curve in Fig 2. Note that during the initial linear phase, the growth rate is approximately
independent of time. As the finite-time singularity is approached, the growth rate increases
rapidly, with ξ growing as (t0−t)−1.7, where t0=10.5. This is broadly consistent with the analytic
prediction of Eq (8). Also shown in the figure is how the width of the mode in the α direction,
∆α, narrows as the time singularity is approached.
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FIG. 2.  The instantaneous growth rate, γ(t) (full
curve), and the width of the perturbation in the α
direction (dashed curve) as a function of time.

FIG. 3. The red line provides an artist’s
impression of the filamentary structure into
which the ballooning mode evolves. It originated
from the white field line. Note, the filament
remains close to the field line on the inboard
side, but moves far from it on the outboard side.

To summarise, we have found that during the non-linear evolution of the ballooning mode,
the plasma develops filamentary structures that are elongated along the field line, but highly
localised in the directions perpendicular to the field line. On the outboard (low magnetic
field) side of the tokamak plasma, the filaments are displaced radially a large distance from
the field line on which they originated. On the inboard side, the radial displacement is much
less. A cartoon illustrating this structure is shown in Fig 3.

3. Two-fluid simulations

The 3D BOUT code [6] has been used to explore the pedestal properties in plasmas that are
unstable to ballooning modes in the edge region [7]. BOUT is based on a reduced set of
Braginskii equations, which are solved in both the pedestal and scrape-off layer regions. A
tokamak equilibrium that is linearly unstable to a peeling-ballooning mode is used as the
starting point for the calculation. At early times, an n=20 fast-growing linear mode is
established, as expected. However, at a later time, there is a sudden burst of activity with an
accompanying rapid loss of heat and particles. Figure 3 shows the mode structure in the plane
of toroidal angle (one fifth of the toroidal region is shown) versus radius, with the separatrix
marked by the vertical dashed line. Figure 3a shows the structure during the linear phase, and
is consistent with what is expected from the linear analysis. At a later time, Fig 3b shows the
growth of a structure, which is localised in the toroidal direction but shows some tendency to
spread in the radial direction. Furthermore, the non-linear structure observed in the BOUT
simulations is very extended along a field line [7]. This spatial evolution is consistent with the
filamentary structures expected from the non-linear ballooning mode analysis (see Eq (9)).
Future work will aim to make more quantitative comparisons between the BOUT results and
the non-linear ballooning mode theory, exploring both the spatial structure and the temporal
evolution.
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FIG. 3. Non-linear calculations of edge MHD structures using the BOUT code in the linear phase (a)
and a highly non-linear phase (b), during which a filamentary structure is formed.

4. Discussion
Analytic theory and numerical calculations both indicate that MHD ballooning modes evolve
into non-linear structures that result in a filamentation of the plasma. It is now widely
believed that ballooning modes, driven unstable by the steep pressure gradient in the edge
pedestal region, do play an important role in the dynamics of large (Type I) ELMs in
tokamaks. It is therefore natural to ask what role such filamentary structures might have in the
rapid loss of heat and particles that occurs during an ELM. There is clear experimental
evidence that such filamentary structures do exist during ELM events [9]. However, their role
in the loss of heat and particles during the ELM remains unclear. The theory presented in
Section 2 is based purely on ideal MHD and therefore cannot lead to any transport. In order to
address the transport processes during an ELM, it is necessary to go beyond ideal MHD
theory. The rest of this paper provides some speculative remarks on possible mechanisms.
The basic model we propose for the ELM event is the following. At some time, the edge
pressure gradient and/or current density drive an ideal MHD mode unstable in the pedestal
region. As the mode grows it evolves to form the filamentary structures, elongated along a
magnetic field line, but localised about it. On the outboard side, the filament pushes out into
the scrape-off layer, but remains connected back into the pedestal region on the inboard side.
When considering how the filaments could, in principle, lead to enhanced heat and particle
transport, it is important to realise that the filaments themselves do not carry sufficient energy
at any one time to explain the amount of energy loss in an ELM event. Thus, the energy loss
cannot be explained simply as a result of the filaments breaking off from the core plasma and
depositing their energy in the scrape-off layer. Instead, we propose two possible alternative
mechanisms that could be operative.
In the first mechanism it is proposed that the filaments act as conduits, along which heat and
particles can flow freely (as this involves transport parallel to the magnetic field lines).
Because the filaments connect back into the hot core (pedestal) plasma far along the field
lines, they effectively have an infinite reservoir of heat and particles to tap into. It is proposed
that the filaments enter the scrape-off layer on the outboard side, so that they provide a direct
route for pedestal plasma to reach the scrape-off layer. Of course, within an ideal MHD
model, the heat and particles could not leave the filament to enter the scrape-off layer, and
additional physics must be invoked to explain this process. One possibility is that the
narrowing of the filament leads to sharp pressure gradients, which in turn would enhance
diffusive losses from the hot filament into the cooler scrape-off layer. A second possibility is
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that these strong pressure gradients could trigger secondary instabilities, which again would
enhance the losses from the filament into the scrape-off layer. A particular concern for ITER
is that if a filament were to strike the vessel wall, it would impart very large, localised heat
loads, which could be very damaging.
A second mechanism is also possible. A filament erupts from the plasma by twisting to
squeeze between field lines on adjacent flux surfaces without reconnection (the twisting
motion is necessary because of the magnetic shear). However, if there is a strong sheared
flow, this process could not occur (our calculations neglected any plasma flow). Either the
shear flow would suppress the ballooning mode, or the ballooning mode would suppress the
shear flow. We know that there is a strong sheared flow associated with the improved
transport in the pedestal region, but the origin of the torques which give rise to this remain
uncertain. However, if the J×B torque associated with the ballooning mode can dominate the
driving torque, presumably associated with the L-H transition physics, and bring the pedestal
plasma to rest, this would allow the filaments to grow. If that is the case, once the shear flow
is suppressed, the plasma would presumably revert to an L-mode state, and the pedestal
would collapse. Indeed, as the pressure gradient in the H-mode pedestal could be far above
any critical gradient required for turbulent transport in the absence of sheared flow, the
resulting heat and particle loss during the ELM could be far higher than even that expected
from L-mode discharges. Thus, in this scenario, the filaments would act as a trigger to revert
the plasma edge back to an L-mode, rather than be a direct cause of the enhanced transport
themselves. Once the pressure gradient in the edge region has collapsed, the ballooning mode
would be re-stabilised, allowing the flow shear and pedestal to re-establish, and the process
would repeat.
There is clearly much to be done to place this model for the ELM crash on a firmer theoretical
basis. Edge turbulence codes will be invaluable here to help clarify the dominant mechanisms.
However, the explosive nature of the instabilities, together with a tendency for the MHD
structures to evolve to very fine spatial scales, also provide a role for analytical theory to
develop qualitative solutions, and to guide the procedures and numerical schemes used to
simulate ELMs in the large-scale computer calculations.
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