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Abstract

This paper reports progress on numerical and theoretical studies of electron transport in
tokamak including: (1) electron temperature gradient turbulence; (2) trapped electron mode
turbulence; and (3) a new finite element solver for global electromagnetic simulation. In
particular, global gyrokinetic particle simulation and nonlinear gyrokinetic theory find that
electron temperature gradient (ETG) instability saturates via nonlinear toroidal couplings,
which transfer energy successively from unstable modes to damped modes preferably with
longer poloidal wavelengths. The electrostatic ETG turbulence is dominated by nonlinearly
generated radial streamers. The length of streamers scales with the device size and is much
longer than the distance between mode rational surfaces or electron radial excursions. Both
fluctuation intensity and transport level are independent of the streamer size. These sim-
ulations with realistic plasma parameters find that the electron heat conductivity is much
smaller than the experimental value and in contrast with recent findings of flux-tube simu-
lations that ETG turbulence is responsible for the anomalous electron thermal transport in
fusion plasmas. The nonlinear toroidal couplings represent a new paradigm for the spectral
cascade in plasma turbulence.

1 Electron temperature gradient turbulence

Electron temperature gradients in magnetically confined plasmas provide expansion free energy
for driving various drift-wave instabilities, which may induce high level electron heat transport
often observed in toroidal experiments. Experimental evidences for the origin of electron trans-
port are not conclusive. Candidate instabilities include the trapped electron mode (TEM) and/or
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ion temperature gradient (ITG) mode with a characteristic length of the ion gyroradius [1], the
electromagnetic electron temperature gradient (ETG) turbulence with a shorter scale length of
the collisionless electron skin depth [2], and the electrostatic ETG mode [3] with the shortest
scale length of the electron gyroradius.

The ETG instability has generally been discarded as a realistic driver for the anomalous
electron transport since a heuristic mixing length estimate predicts that the electron heat con-
ductivity driven by the ETG turbulence is smaller than the ITG/TEM transport by a factor of
the square-root of ion-electron mass ratio. Nonetheless, the ETG nonlinear evolution could
be very different. Whereas an E × B nonlinearity associated with zonal flows [4, 5, 6] dom-
inates in the ITG turbulence, the ETG turbulence is regulated by a much weaker polarization
nonlinearity [7].

The renewed interest in the electrostatic ETG instability comes from gyrokinetic continuum
simulations using the flux-tube geometry [8], which found that electron transport up to 60 times
of the mixing length level is driven by the E × B convection of ETG radial streamers. However,
global fluid simulations [9, 10] found that the ETG transport is smaller than the flux-tube result
by more than an order of magnitude, and concluded that ETG turbulence is unlikely respon-
sible for the electron anomalous transport. Furthermore, the saturation mechanism and direct
relationship between the streamer size and the electron transport have not been established by
numerical simulations or by first-principles theories.

In present studies, global gyrokinetic particle simulation and nonlinear gyrokinetic theory
find that the ETG instability saturates via nonlinear toroidal couplings, which transfer energy
successively from unstable modes to damped modes preferably with longer poloidal wave-
lengths. The electrostatic ETG turbulence is dominated by nonlinearly generated radial stream-
ers. Both fluctuation intensity and transport level are independent of the streamer size, which
scales with the device size. The electron heat conductivity is much smaller than the experi-
mental value or the flux-tube result, and cast doubts on recent claims that ETG turbulence is
responsible for the anomalous electron transport in toroidal devices. The nonlinear toroidal
coupling found in our studies is a new paradigm for plasma turbulence since it governs the
poloidal spectral energy cascade in all toroidal drift wave instabilities.

Our global ETG simulations and associated gyrokinetic theory have important implications
on plasma turbulence studies. First, particle dynamics must be treated on the same footing
as fluid nonlinearity. While wave-wave couplings determine fluctuation characteristics, trans-
port is driven by wave-particle interactions. The heuristic mixing length rule, which underlies
most of transport models, do not correctly describe transport processes in collisionless plasmas.
Secondly, toroidal geometry must be treated rigorously in turbulence simulations. The radial
variations of the safety factor q(r) need to be retained to properly account for nonlinear wave-
particle interactions. All eigenmodes participate in nonlinear toroidal couplings and thus must
be included in simulations. Finally, the contradictory results from ETG turbulence simulations
between flux-tube and global codes are consequences of differences in the respective geom-
etry representations. While toroidicity is treated rigorously in global codes, flux-tube codes
make key approximations, the validity regime of which remains dubious for nonlinear simula-
tions involving fluctuations with low toroidal mode numbers and nonlinear particle dynamics.
Therefore, the flux-tube simulation is a reduced model, and its validity rests on the ability to
recover results of the more general global simulation in appropriate asymptotic regimes.

ETG turbulent transport – The massively parallel gyrokinetic toroidal code (GTC) [4]
employs billions of spatial grids and particles to provide adequate resolutions for global ETG
simulations. Toroidal geometry is treated rigorously and radial variations of safety factor q,
magnetic shear ŝ, and trapped particle fraction are retained. An efficient global field-aligned
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mesh [11], which reduces computational requirements by three orders of magnitude for global
ETG simulations, provides the maximal efficiency without any simplification in the geometry
or physics models. In contrast, flux-tube codes remove important radial variations of all equi-
librium quantities and use a periodic boundary condition, the validity of which is questionable
in the presence of radial streamers.

GTC simulations use representative tokamak plasmas with the following local parame-
ters at r = 0.5a identical to flux-tube simulations: R 0/LT = 6.9, R0/Ln = 2.2, q = 1.4,
ŝ ≡ (r/q)(dq/dr) = 0.78, τ = Te/Ti = 1, and a/R0 = 0.36. Here R0 is the major radius,
a is the minor radius, LT and Ln are electron temperature and density gradient scale lengths,
respectively, Ti and Te are the ion and electron temperatures, and q is the safety factor. The
electrostatic potential δφ = 0 is enforced at r < 0.25a and r > 0.75a. Simplified physics
models include: a parabolic profile of q = 0.854 + 2.184(r/a)2 , a temperature gradient pro-
file of exp{−[(r− 0.5a)/0.2a]6}, a circular cross section, and electrostatic fluctuations with an
adiabatic ion response. A collision operator modeling a heat bath [11] prevents the temperature
profile relaxation. The computational mesh consists of 64 toroidal grids, and a set of unstruc-
tured radial and poloidal grids with a perpendicular grid size of 1.5ρe. Numerical convergence
studies use 5 − 20 particles per cell. The simulation device size ranges from NSTX to DIIID
tokamaks.

The linear ETG dispersion re-
lation for these plasma parame-
ters shows that the most unstable
mode has a poloidal wavevector
kθρe = 0.33 with a linear growth
rate γ0 = 0.038ve/LT and a real
frequency ωr ' 3γ0, where ve =
√

Te/me and me is the electron

mass. In nonlinear simulations,
random fluctuations with a very
small amplitude first grow expo-
nentially, then saturate, and even-
tually reach a quasi-steady state.
The poloidal spectrum down-shifts
gradually from a linear phase to
a nonlinear phase, and peaks around
kθρe ' 0.12 at t ' 10/γ0 af-
ter the mode saturation for a de-
vice size a = 2000ρe . Each
mode is represented by the am-
plitude of the harmonics (n,m)
with a toroidal mode number n
and a poloidal mode number m

Figure 1: Poloidal contour plots of electrostatic potential at t = 20/γ0

after saturation. The poloidal projection of a typical electron orbit is
plotted from saturation to t. The length unit is ρe.

such that kθ = nq/r, m = nq, and q = 1.4 at r = 0.5a. The dominant modes with kθρe ∼ 0.12
are obviously nonlinearly driven since the actual growth rates, ≥ γ0, are much larger than their
linear growth rates. This suggests that the most unstable modes with kθρe ' 0.33 saturates via
a nonlinear mode coupling to longer wavelength modes, and that structures in the fully devel-
oped turbulence are nonlinearly generated. Long wavelength modes down to kθρe ∼ 0 are all
excited, and grow before shorter wavelength modes of kθρe ' 0.12, suggesting that the down-
shift of the poloidal spectrum is not the conventional inverse cascade [7]. Similar nonlinear
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down-shift of the poloidal spectrum also occurs during a period of ∼ 10 growth times in the
ITG turbulence [11].

The poloidal contour plots of the electrostatic potential (or density) in the fully devel-
oped turbulence is shown in Fig. 1. The seemingly coherent structures actually contain hun-
dreds of toroidal modes. Clearly the ETG turbulence is dominated by nonlinearly generated
radial streamers. The nonlinear decorrelation rate γnl can be estimated from the streamer
eddy turnover time associated with the E ×B drift: γnl ∼ Ωekrρekθρeeδφ/Te. We find that
γ0/γnl ∼ 17 for the case of a = 2000ρe , and that the value of γ0/γnl increases linearly with
a/ρe. The fact that γ0/γnl � 1 contradicts the mixing length rule of γnl balancing γ0, and
invalidates a common practice, where γnl is replaced by γ0 for the condition of the turbulence
suppression by sheared flows, i.e., ω E×B ∼ γ0.

A typical electron orbit during a period of 20/γ0 is shown in Fig. 1. ETG streamers only
exert a small perturbation to the electron free streaming motion, so the electron does not rotate
around streamers. Streamers are simply amplitude contours of electrostatic potential (or den-
sity), or equivalently, E× B velocity fields. Obviously, particles execute not only this E× B

motion, but also free streaming motion along the magnetic field line in collisionless plasmas. In
fact, the radial excursion averaged over all electrons is diffusive, and is roughly 80ρe over a pe-
riod of 20/γ0, during which streamers should have completed a full rotation as estimated by the
eddy turn over time. Again, this supports the thesis that transport are due to the overlapping of
phase-space islands of resonant electrons, and further invalidates the transport scaling obtained
from the mixing length estimate, which assumes that particles rotate around turbulence eddies.
The key here is that resonant electrons, which contribute to the transport, can decorrelate with
streamers because of a nonlinear loss of the parallel resonant condition (ω − k‖v‖ = 0) due to
radial variations of q(r).

We find that the streamer size scales with the device size. However, both fluctuation intensity
and heat conductivity are approximately independent of the device size for a/ρe = 1000−8000.
The electron transport level, χe ' 3.2cTeρe/eBLT , is well below the typical experimental
values, and is about an order of magnitude smaller than the flux-tube result [8]. Additional
effects, e.g., space charge effects, externally driven flows [12], and couplings to ITG/TEM
turbulence [13], should further reduce the electron transport, but would not affect qualitatively
the key physics discussed in this paper, i.e., nonlinear toroidal couplings and nonlinear wave-
particle interactions.

Nonlinear Toroidal Couplings – Nonlinear interactions of toroidal ETG eigenmodes take
three forms: a nonlinear mode coupling between two toroidal n-modes, a modification of the
parallel mode structure determined by the radial width of poloidal m-harmonics, and a modu-
lation of the radial envelope represented by a ballooning angle θ0. Although all interactions are
formally of the same order, we find that dominant saturation mechanism is the two n-modes
coupling. These linear streamers can interact nonlinearly because of the unique ballooning
mode structure, i.e., radial localization of linearly coupled m harmonics near mode rational sur-
faces. This nonlinear toroidal coupling is strictly geometry-specific since two parallel streamers
in a slab geometry cannot interact.

In a controlled simulation with a = 1000ρe , two pump eigenmodes are allowed to grow
first with n0 = 110 and n1 = 95, which correspond to kθρe = 0.31 and 0.27, respectively,
at r = 0.5a. When their amplitudes are much higher than any other mode, all eigenmodes
are allowed to grow. Each m0 harmonic of the n0 mode interacts most strongly with one m1

harmonic of the n1 mode, where m0 and m1 are the harmonics whose mode rational surfaces
sit close to each other. The coupling proceeds as:

(n0,m0) + (n1,m1) ⇒ (n0 ± n1,m0 ± m1).
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This coupling transfers energy to a low-n quasi-mode, nl = 15 more efficiently than to a very
high-n mode, nh = 205. The nl mode is a forced oscillation since its intrinsic frequency is much
smaller than the frequency difference between n0 and n1. Each ml harmonic of the nl quasi-
mode is localized near its own mode rational surface with a very long parallel wavelength. The
radial coherent length of ml harmonics is similar to the distance between pump mode rational
surfaces, which is the radial width of interactions between m0 and m1 harmonics. Therefore,
the nl quasi-mode does not possess the ballooning mode structure.

The nl quasi-mode now couples back to two
pump modes and generates secondary modes n2 =
80 and 125 (upper panel of Fig. 2, before satu-
ration). In turn, each secondary n2 mode cou-
ples with the far-side pump mode to generate an-
other quasi-mode nl = 30. These successive cou-
plings proceed until all n-modes that satisfy the
n-matching condition are populated with either a
quasi-mode or a secondary mode (middle panel
of Fig. 2, after saturation). The amplitudes of
longer wavelength n2 modes, 80, 65, · · ·, are much
higher than those of shorter wavelength n2 modes,
125, 140, · · ·, indicating that the energy cascades
preferably to lower-n secondary modes. The nl

quasi-modes do not contain much energy, or drive
much transport. Rather, they act as mediators
for the energy transfer from pump modes to sec-
ondary modes with longer wavelengths. There-
fore, the nonlinear toroidal coupling is similar to
the Compton Scattering [14] with the quasi-modes
playing the role of quasi-particles. In short, we
find that the ETG instability saturates via nonlinear
toroidal couplings, rather than a Kelvin-Helmholtz
secondary instability suggested by flux-tube sim-
ulations [8]. Parallel wavevector also increases
through coupling to the (0, 1) mode, which is a
weaker nonlinear interaction due to Landau damp-
ing of the (0, 1) mode. The generation of the zonal
flow is the weakest nonlinear interaction because

t=300L  /vT e

φnm

t=400L  /vT e
φnm

t=450L  /vT eφnm

Figure 2: Toroidal mode number n spectra before
and after saturation of the pump modes at r = 0.5a.
Solid line represents the harmonics of m = qn;
m = qn + 1 for dashed line.

the amplitude of the sidebands with θ0 6= 0 is much smaller than the pump modes. Steady state
is achieved both via energy transfer to damped modes and via enhanced Landau damping due
to modification by the (0, 1) mode of the parallel structure of linearly unstable modes.

Nonlinear Gyrokinetic Theory – Nonlinear coupling requires spatial overlap between
poloidal harmonics of n0 and n1 pump modes. This can be expressed as a selection rule via the
ballooning-mode representation, i.e., δφ0,1(~r, t) = e−i(n0,1ζ−ms0,1θ)A0,1(t)

∑

j eijθΦ(z0,1 − j),
where ms0,1 = n0,1q(rs), z0,1 = (r − rs)/∆0,1, ∆0,1 = 1/n0,1q

′(rs), Φ(z) is the normalized
linear eigenmode with

∫ |Φ|2dz = 1, and rs is a reference low-order mode rational surface with
q(rs) = ml/nl. The low-n quasi-mode is then written as δφl(~r, t) = e−i(nlζ−mlθ)Al(t)Φl0(~r),
ignoring both radial variations on a long scale of |1/nlq

′| and envelope modulations due to either
equilibrium variations or zonal flows.

Assuming an adiabatic ion response and a fluid limit for the nonlinear electron response in
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the gyrokinetic equations [15], we have a Hasegawa-Mima-like mode coupling equation,

∂

∂t
Lkδφk = αe

c

2B
ρ2

e(
~k′′
⊥ × ~k′

⊥) · ~e‖(k′′
⊥

2 − k′
⊥

2
)δφk′δφk′′

with ~k = ~k′ +~k′′, αe ≡ [δP⊥,ek/(eN0eδφk)− 1] = {τ (1 + ηe)/[(3τ − 1)Ln/R +1/2] + 1}, and
Lk the linear eigenmode operator, i.e., L0Φ(z0) = L1Φ(z1) = 0. ~k′ and ~k′′ should be strictly
interpreted as operators, i.e., i~k′δφk′ = ~5δφk′.

The nonlinear evolution equation for the low-n quasi-mode, using k = knl
, k′

⊥ = (kn0
)⊥

and k′′
⊥ = −(kn1

)⊥, is

∂

∂t
Llal(t)Φl0(r) = ia0a

∗
1α̂e(

kθ0

40
)

∂

∂z0
[δk2

⊥]0Ψ0

with ak = eAk/Te, α̂e = αe|Ωe|ρ4
e, Ψ0 =

∑

j |Φ0j|2, Φ0j = Φ(z0 − j), and [δk2
⊥]0Ψ0 =

2nl

n0

k2
θ0(1 + ŝ2/W 2

0 )Ψ0 ≡ 2nl

n0

k2
θ0Ψ0 + q′s

2∑

j(n
2
1Φ0j

∂2

∂z2

0

Φ∗
0j − n2

0Φ
∗
0j

∂2

∂z2

0

Φ0j). Here, we have con-

sidered kθ1 ' kθ0 and kθl ≡ kθ0−kθ1 = kθ0(nl/n0). Furthermore, ŝ = rsq
′
s/qs, and W0 ∼ O(1)

denotes the typical width of Φ(z0). Noting Ll ' τ , and defining Φl0(r) = i∂z0
(1 + ŝ2/W 2

0 )Ψ0,
we have

∂al(t)

∂t
=

α̂e

τ

2nl

n0

k3
θ0

40
a0a

∗
1. (1)

The feedback equation for the pump mode a0(t), using k = kn0
, k′ = kn1

, and k′′ = knl
, is

(∂t − γ0)a0(t) = −(α̂e/τ )a1al(kθ1/41)(k
2
⊥1/W

2
l ) (2)

with (k2
⊥1/W

2
l ) ≡ − ∫ dz0Φ

∗[k2
⊥1]Φ

∂2

∂z2

0

(1 + ŝ2

W 2

0

)Ψ0, [k2
⊥1]f(z0)g(z0) ≡ −k2

θ1[g(1 − ŝ2∂2
z0

)f +

ŝ2f∂2
z0

g], and γ0 being the linear growth rate. Wl represents the typical radial scale of Φl0 or
δφl. For symmetry reasons, the evolution equation of another pump mode a1(t) is:

(∂t − γ1)a1(t) = (α̂e/τ )a0a
∗
l (kθ0/40)(k

2
⊥0/W

2
l ). (3)

We extend the results to the case of multi-n pump modes interacting with a single nl quasi-
mode. Assuming n � nl, we take a continuum limit and obtain a spectral-cascading equation
for the pump wave energy density In = |an|2/2,

(

∂

∂t
− 2γn

)

In + vn

∂

∂n

In = 0, (4)

where vn(t) = −[(2α̂e/τ )ŝk2
θn(k2

⊥n/W 2
l )nl]|al(t)|, and,

(
∂

∂t
+ γl)|al(t)| = 4(α̂e/τ )q′s

∫

k3
θnIndn (5)

with γl the Landau damping rate of the low-n quasi-mode.
Equation 4 indicates cascades toward lower n secondary modes if vn < 0. Meanwhile,

sgn(vn) = −sgn(k2
⊥n), and, approximately, k2

⊥n ≈ k2
θn[ŝ2/W 2

l − (1 + ŝ2/W 2
n ))]. Noting

Wn ≤ 1 and ŝ ∼ 1, we have Φl0(r) ∼ |Φn(z)|2, and hence, Wl ∼ Wn/2 and k2
⊥n > 0,

i.e., vn < 0. So wave energy cascades from high-n pump to lower-n secondary modes. We
emphasize that rapid radial variations of the low-n quasi-mode are crucial in determining, not
only the direction of energy cascade, but also the cascading rate, i.e., |vn| ∼ W−4

l .
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2 Trapped Electron Mode Turbulence

We further find that the ETG transport level is much smaller than that driven by the trapped
electron mode (TEM) turbulence for the same plasma parameters. Kinetic electrons have been
implemented in GTC code using the fluid-kinetic hybrid electron model. The linear frequen-
cies and grow rates of electrostatic TEM/ITG modes from GTC simulations are found to be in
good agreement with a comprehensive linear eigenvalue code (FULL) of PPPL and a global
gyrokinetic particle-in-cell code (GT3D) developed in JAERI of Japan. Global nonlinear sim-
ulations of trapped electron modes have been carried out with contribution of kinetic electrons
to zonal flows properly retained. The TEM driven electron thermal conductivity is found to be
at a level of experimental relevance. The nonlinear electron dynamics in the TEM turbulence is
constrained by the conservation of the second invariant, which implies that energy is not con-
served. The consequences of simultaneous diffusions of electron banana orbits in both energy
and real space, which have not been studied in theories or flux-tube simulations, remained to
be further explored. Zonal flows with short radial wavelength are found to be generated in the
TEM turbulence, and the electron contribution to the zonal flow generation is found to be larger
than the ion contribution.

We have estimated [16] the role of the trapped
electron nonlinearity in zonal flow generation
quantitatively in the context of a modulational
instability theory in toroidal geometry[6]. We
follow the usual weak turbulence expansion for
fluctuations with a single non-zero toroidal mode
number n involving the pump TEM φ0, the side
band TEM’s φ+ and φ−, and the zonal flow mode
φZ . The Hasegawa-Mima type nonlinear cou-
pling of φ0 and φ+,− is balanced by the neo-
classically enhanced polarization shielding of the
zonal flow potential φ Z as described in Eq. (3) of
the Ref.[6]. Because the trapped electron banana
width is much smaller than the trapped ion ba-
nana width, and νeeρ

2
e/(νiiρ

2
i ) '

√

(me/Mi), the

shielding of φZ on the left hand side of Eq. (3)
is not changed; therefore the presence of trapped
electrons can modify the balance of the nonlinear
polarization current and the neoclassical polar-
ization current only through modification of the
linear susceptibility αi of the pump TEM in that

Figure 3: A trapped electron orbit scattered by TEM
turbulence.

equation. On the other hand, the nonlinear excitation of the linearly damped side bands φ+,−

through E×B nonlinear coupling between φ0 and φZ is described by the quasi-neutrality con-
dition for the density responses obtained from the nonlinear ion gyrokinetic equation (Eq. (4) of
Ref. [6]) and the trapped electron nonlinear bounce kinetic equation. We find that the trapped
electrons merely reduce the E×B nonlinearity (which has no explicit mass dependence), which
produces side band fluctuations via the zonal flow modulation, by a factor of

√
8ε/π, i.e., the

surface averaged fraction of trapped electron population (The right hand side of Eq. (4) in
Ref.[6] should be multiplied by (1 −

√
8ε/π). Therefore, most of the zonal flow growth rate

change due to trapped electrons may occur via changes in linear properties such as the side band
damping rate and the linear susceptibility (dispersion relation) of the pump TEM.
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3 A Finite Element Solver for Global Electromagnetic Simu-
lation

Conventionally GTC uses an iterative Poisson solver [17] which is efficient for the adiabatic
electron response. With the inclusion of the non-adiabatic electron response (using either the
split-weight schemes [18] or the hybrid model [19] for finite-β plasmas), the resulting gyroki-
netic Poisson’s equation requires a new algorithm. In the new solver, we use Padé approxima-
tion to cast the gyrokinetic Poisson equation in a differential form to properly treat the response
of the short wave length mode. Normalizing with ρs, n0, and eΦ/Te for the potential, we obtain
(τ = Te/Ti)

∇2
⊥Φ = −

(

1 − 1

τ
∇2

⊥

)

(

¯δni − δne

)

, (6)

which is in a differential form compared to the integral form of the original solver.
The global code GTC has unique

grid structures due to the global
field aligned mesh we employed.
The main task in FEM is the book-
keeping in relating the labels of
the vertices and the labels of the
triangle elements. Then the rest is
reduced to solving a sparse matrix
equation A · Φ = b. We employ
the the state of the art PETSc code
from Argonne National Labora-
tory [20]. The timing of PETSc
is quite promising. The CPU time
versus the number of grids scales
almost linear and MPI (in PETSc)
speeds up the computation pro-
portional to the number of pro-
cessors. One approach to fur-
ther speed up the elliptic solver is
to employ the algebraic multigrid
(AMG) method, which is a multi-
level method where geometry in-

−1 −0.5 0 0.5 1
x

−1

−0.5

0

0.5

1

y

Figure 4: An illustration of GTC grid for finite element solver.

formation is not required (as compared to the geometrical multigrid method). Conveniently
enough, the PETSc code is interfaced with hypre (high performance preconditioners) [21] and
Prometheus [22] which employ AMG as a preconditioner. We plan to employ AMG to further
accelerate the elliptic solve. Taking the ITG mode as an example, the solution from the new
finite element solver has been successfully benchmarked with the solution from the original
GTC’s iterative solver.

Work supported by DOE grants DE-FC02-04ER54796 (Lin), DE-FG03-94ER54271 (Chen),
DE-AC02-76CH03073 (PPPL), and FG02-04ER54738 (UCSD), and in part by DOE SciDAC
GPS Center.
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