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Abstract. Velocity-space structures of ion distribution function associated with the ion temperature gradient (ITG)
turbulence and the collisionless damping of the zonal flow are investigated by means of a newly developed toroidal
gyrokinetic-Vlasov simulation code with high velocity-space resolution. The present simulation on the zonal flow
and the geodesic acoustic mode (GAM) successfully reproduces the neoclassical polarization of trapped ions as
well as the parallel phase mixing due to passing particles. During the collisionless damping of GAM, finer-scale
structures of the ion distribution function in the velocity space continue to develop due to the phase mixing while
preserving an invariant defined by a sum of an entropy variable and the potential energy. Simulation results
of the the toroidal ITG turbulent transport clearly show generation of the fine velocity-space structures of the
distribution function and their collisional dissipation. Detailed calculation of the entropy balance confirms the
statistically steady state of turbulence, where the anomalous transport balances with the dissipation given by the
weak collisionality. The above results obtained by simulations with high velocity-space resolution are understood
in terms of generation, transfer, and dissipation processes of the entropy variable in the phase space.

1. Introduction

Numerical simulations based on the gyrokinetic formalism for drift wave turbulence, such
as the ion temperature gradient (ITG) mode [1], have been extensively performed with the
aim of understating anomalous transport mechanism in a core region of magnetically confined
plasmas. Transport suppression by self-generated zonal flows [2, 3] is one of the important
results confirmed by the numerous simulations as well as theoretical investigations. In a high-
temperature plasma, where mean-free-paths of ions and electrons are much longer than device
sizes, the one-body velocity distribution function,f , is far from the thermal equilibrium with
the Maxwellian,FM. This is why kinetic approaches are indispensable for studying the core
turbulent transport. Velocity-space structures of the distribution function and their relation to the
turbulent transport, however, have rarely been discussed in the conventional kinetic simulations.

Regarding the velocity-space structures off in plasma turbulence, it has been theoretically
pointed out that, if a steady transport flux is observed in collisionless turbulence driven by
constant density or temperature gradients, a quasisteady state should be realized [4–6], where
high-order velocity-space moments of the perturbed distribution functionδ f continue to grow
but the low-order ones are constant in average. Here, the deviation off from the equilibrium
is defined byδ f ≡ f −FM. Our gyrokinetic-Vlasov (Eulerian) simulation manifested existence
of the quasisteady state of the collisionless slab ITG turbulence [7], where continuous gener-
ation of micro velocity-scale structures ofδ f through the phase mixing is responsible for the
growth of the high-order moments. The quasisteady state is also characterized by a balance
between monotonic increase of an entropy variable defined by a square-integral ofδ f and the
turbulent transport. Recently, it has also been shown numerically and analytically how the
whole velocity-space spectrum off from macro to micro scales is determined by processes of
the anomalous heat transport, the phase mixing, and the dissipation in the steady state of the
weakly collisional slab ITG turbulence [8]. As the macro velocity-space structures off directly
related to the transport flux are hardly influenced in the weak collisionality limit, the transport
coefficient asymptotically approaches the value of the collisionless case [8]. It is emphasized
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that only a kinetic simulation with high velocity-space resolution and negligible numerical dis-
sipation enables one to quantitatively investigate how the turbulent transport depends on the
weak collisionality.

We have now developed a new toroidal gyrokinetic-Vlasov simulation code with high velocity-
space resolution [9], which can precisely deal with the phase-mixing processes off in toroidal
configurations. With this code, detailed velocity-space structures produced by collisionless dy-
namics of the zonal flow [10] and the geodesic acoustic mode (GAM) [11] are successfully
simulated and the transport flux in the toroidal ITG turbulence consistent with the entropy bal-
ance can be obtained. In this paper, we present the numerical simulation results of the zonal
flow dynamics and the ITG turbulent transport in a tokamak configuration, focusing on the
velocity-space structures of the ion distribution function.

This paper is organized as follows. After introduction of the physical model in Section 2,
the balance equation for the entropy variable in a toroidal flux tube configuration is described
in Section 3. In Section 4, we report velocity-space structures ofδ f during the collisionless
damping of GAM associated with the zonal flow, of which the level is considered to be critical
to determination of the transport flux in the toroidal ITG turbulence. Nonlinear simulations of
the toroidal ITG turbulent transport are shown in Section 5, where the entropy balance and the
velocity-space structures of the distribution function are discussed. The results are summarized
in Section 6.

2. Model

We consider the gyrokinetic equation [12] for the ion distribution function in the low-β
(electrostatic) limit. By applying the flute reduction for a large-aspect-ratio tokamak with con-
centric circular magnetic surfaces and the major radiusR0, the governing equations are written
as

∂δ f
∂ t

+v‖bbb·∇δ f +
c

B0
{Φ,δ f}+vvvd ·∇δ f −µbbb·∇Ωi

∂δ f
∂v‖

=
(
vvv∗−vvvd−v‖bbb

) · e∇Φ
Ti

FM +C(δ f )

(1)
wherebbb, B0, c, Φ, e, andTi are the unit vector parallel to the magnetic field, magnetic field
strength on the magnetic axis, the speed of light, the electrostatic potential evaluated at the
guiding center, the elementary charge, and the ion temperature, respectively. The magnetic
moment is defined byµ ≡ v2

⊥/2Ωi with the ion cyclotron frequencyΩi = eB/mic (mi is the ion
mass). The collision term is shown byC(δ f ).

In the toroidal flux tube coordinates [13],x = r− r0, y = r0
q0

[q(r)θ −ζ ], andz= θ , [where
the safety factorq(r = r0) = q0 at the minor radiusr = r0], background gradients and magnetic
shear parameters are assumed to be constant, such thatLn =−(d lnn/dr)−1, LT =−(d lnTi/dr)−1,
andq(r) = q0[1+ ŝ(r − r0)/r0]. The poloidal and toroidal angles are denoted byθ andζ , re-
spectively. The abbreviations are defined by

bbb·∇ =
1

q0R0

∂
∂z

, {Φ,δ f}=
∂Φ
∂x

∂δ f
∂y

− ∂Φ
∂y

∂δ f
∂x

, B = B0

(
1− r0

R0
cosz

)
,

vvvd =−
v2
‖+Ωiµ
ΩiR0

[x̂sinz+ ŷ(cosz+ ŝzsinz)] , vvv∗ =−ŷ
cTi

eLnB0

[
1+ηi

(
miv2

2Ti
− 3

2

)]
,

whereηi = Ln/LT . Unit vectors in thex andy directions are denoted by ˆx andŷ, respectively.
The radially-localized flux tube model enables us to impose the periodic boundary condition
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both in thex andy directions so that the spectral method can be applied to calculation of the
convection (the Poisson brackets) term in Eq.(1). In the perpendicular wave number space
(kx,ky), Φ is related to the electrostatic potential, such that

Φkx,ky = J0(k⊥v⊥/Ωi)φkx,ky . (2)

Here,J0 is the zero-th order Bessel function andk2
⊥ = (kx+ ŝzky)2+k2

y. The potential acting on
particle positions,φkx,ky, is determined by the quasi-neutrality condition,

∫
J0 fkx,kyd

3v− eφkx,ky

Ti
n0(1−Γ0) = ne,kx,ky , (3)

where the Fourier component ofδ f is denoted byfkx,ky. Also,Γ0 = e−bI0(b) with b=(k⊥vti/Ωi)2.
The zero-th order modified Bessel function and the ion thermal speed are represented byI0 and
vti =

√
Ti/mi , respectively. The electron density perturbation,ne,kx,ky, from the total one,n0,

with temperatureTe is assumed to be adiabatic,

ne,kx,ky

n0
=





τ
e
(
φkx,ky−

〈
φkx,ky

〉)

Ti
for ky = 0

τ
eφkx,ky

Ti
for ky 6= 0

, (4)

whereτ = Ti/Te and〈· · · 〉 means the flux surface average defined by

〈A〉=
∫ +Nθ π

−Nθ π

A
B

dz

/∫ +Nθ π

−Nθ π

1
B

dz. (5)

The parallel length of the flux tube is set to 2Nθ π where the modified periodic boundary con-
dition is used in thez direction [13]. Hereafter, physical quantities are normalized as follows;
x = x′/ρi , t = t ′vti/Ln, v = v′/vti , B = B′/B0, φ = eφ ′Ln/Tiρi , and f = f ′Lnv3

ti/ρin0, where
prime means dimensional quantities andρi = vti/Ωi .

3. Entropy Balance

The entropy balance equation (normalized) is derived from Eqs.(1), (3), and (4), such that

d
dt

(δS+W) = ηiQi +Di . (6)

In the flux tube coordinates, the entropy variable,δS, the potential energy,W, the ion heat
transport flux,Qi , and the collisional dissipation,Di , are, respectively, defined as

δS= ∑
kx,ky

δSkx,ky =
1
2 ∑

kx,ky

〈∫ | fkx,ky|2
FM

d3v

〉
,

W = ∑
kx,ky

Wkx,ky =
1
2 ∑

kx,ky

[〈
(1−Γ0 + τ)|φkx,ky|2

〉− τ|〈φkx,ky

〉 |2δky,0
]

,

Qi = ∑
kx,ky

Qi,kx,ky =
1
2 ∑

kx,ky

〈
ikyφ−kx,−ky

∫
v2J0 fkx,kyd

3v

〉
,

Di = ∑
kx,ky

Di,kx,ky = ∑
kx,ky

〈∫ [(
J0φ−kx,−ky +

f−kx,−ky

FM

)
C

(
fkx,ky

)]
d3v

〉
.
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The entropy variable associated with fluctuations is also related toδS= SM−Sm in the second
order forδ f , whereSM = − 1

V

∫
d6ZFM lnFM andSm = − 1

V

∫
d6Z f ln f represent macroscopic

and microscopic entropy per unit volume, respectively. The volume in the configuration space
is denoted byV.

Our slab ITG turbulence simulations with high velocity-space resolution have confirmed
that the quasisteady state,d(δS)/dt ≈ ηiQi , is realized in a collisionless turbulence with the
statistically steadyW andQi , where monotonic increase ofδSis attributed to continuous gener-
ation of fine-scale structures ofδ f by the phase mixing through the parallel advection term [7].
Contrarily, the statistically steady state of turbulence appears in a weakly collisional case, where
ηiQi ≈−Di andd(δS)/dt≈ dW/dt≈ 0, and is understood in terms of the production, transfer,
and dissipation processes ofδS [8]. The steady and quasisteady states are, therefore, repre-
sented by two limiting cases of the entropy balance equation.

The phase-mixing processes in a torus are, however, more complicated than that in the slab
geometry because of the toroidal magnetic drift and mirror motions as represented in Eq.(1).
A power-law decay of a density perturbation, which can be precisely simulated by our toroidal
flux tube code [9], is one of the examples. In the next section, we investigate a kinetic damp-
ing process of the zonal flow and GAM by means of the gyrokinetic-Vlasov simulation code.
Assuming finiteky modes to vanish, time-evolution of a zonal flow component withky = 0 (the
toroidal mode numbern= 0) is considered as an initial value problem of a linearized version of
Eq.(1). The entropy balance equation is, thus, written as

d
dt

(
δSkx,0 +Wkx,0

)
= Di,kx,0 , (7)

which consists of a subset of Eq.(6) withky = 0. During the collisionless damping of the zonal
flow and GAM, thus,G≡ δSkx,0 +Wkx,0 is invariant. It is suggested that fine-scale fluctua-
tions ofδ f should develop in the phase space, while a coherent structure corresponding to the
neoclassical polarization can remain in association with the residual zonal flow level.

For precise reproduction of the entropy balance, high velocity-space resolution is necessary,
sinceδS reflects fine-scale structures ofδ f which can be artificially dissipated in numerical
simulations with low resolution. The balance equations, Eqs.(6) and (7), thus, provide a good
measure of judging whether the micro velocity-space structures consistent with the turbulent
transport are correctly resolved or not.

4. Collisionless Damping of Zonal Flow and GAM

Collisionless damping of the zonal flow components and their residual level is considered
to be critical to determination of a saturation level of the ITG turbulent transport [10]. Then, the
initial value problem of the zonal flow and GAM, where a response function of aky = 0 mode
is dealt with [10], has been investigated as an important benchmark test of toroidal gyrokinetic
simulation codes [14–16]. The collisionless damping of the zonal flow and GAM is caused by
the phase mixing processes which generate fine-scale structures ofδ f in the velocity space.
According to Eq.(7), the entropy variable associated with the fine structures should increase
during the collisionless decrease of the potential energy. The conservation property given in
Eq.(7) and velocity-space profiles of the distribution function are useful for confirming accuracy
of the numerical simulations, while they have not been examined in the previous studies.
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FIG. 1: Time-evolutions of the zonal flow potential (left), the entropy variable,δSkx,0, and the potential
energy,Wkx,0, (right) obtained by the toroidal flux tube simulation, whereG0 = δSkx,0 +Wkx,0 at t = 0.
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FIG. 2: Velocity-space profiles of real part of the perturbed distribution function atθ = 0 for different
time steps of simulation (left and middle). The bounce-averaged analytical solution is shown in the
right panel. The horizontal and vertical axes are defined byv‖ and

√
2µΩi , respectively, whereµ is the

magnetic moment. Positive and negative parts are colored by red and green, respectively. Blue lines
show the boundary of trapped and passing particles.

Amplitude of the zonal flow,
〈
φkx,0

〉
, initially given by the Maxwellian perturbation with

m = n = 0 decreases as the collisionless damping of GAM oscillation, wherem andn mean
the poloidal and toroidal mode numbers, respectively. Time-evolution of

〈
φkx,0

〉
obtained by

the toroidal flux tube simulation for the Cyclone DIII-D base case parameters [14] is shown in
Fig.1 (left), where the radial wave numberkx = 0.1715ρ−1

i . The used parameters are as follows;
R0/LT = 6.92, ε ≡ r0/R0 = 0.18, r0/ρi = 80, ŝ= 0.78, q0 = 1.4, ηi = 3.114, andτ = 1. The
residual level of

〈
φkx,0

〉
agrees well with the theoretical estimate, lim

t→∞

〈
φkx,0(t)

〉
/
〈
φkx,0(t = 0)

〉
=

1/(1+1.6q2/ε1/2) [10]. During the collisionless damping of zonal flow and GAM,δSkx,0 in-
creases as shown in Fig.1 (right), while the potential energy,Wkx,0, decreases to a quite small
level. For discretization of the velocity space,−5vti ≤ v‖ ≤ 5vti and 0≤ µ ≤ 12.5v2

ti/Ωi , we
have employed 1025×65 grid points, while 128 grid points are used for−π ≤ z< π. The high
phase-space resolution enables us to reproduce the conservation ofG with a relative error less
than 3%.

Velocity-space profiles of Re[fkx,0] at different time steps are shown in Fig.2, where the
boundary of trapped and passing ions is represented by blue lines. Contribution of the trapped
ions to the neoclassical polarization [10] is clearly identified by a mean negative value offkx,0
for trapped particles. A profile of the distribution function resulting from the numerical sim-
ulation agrees with a bounce-averaged analytical solution except for fine-scale oscillations as
shown in Fig.2 (right). Generating fine-scale structures offkx,0 in the direction of the parallel ve-
locity (v‖), the phase mixing due to the passing particles largely deforms the initial Maxwellian
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FIG. 3: Color contours of the electrostatic potential obtained by the toroidal ITG turbulence simulation
at t = 50 (left), 120(middle), and250Ln/vti (right).

distribution as seen in Fig.2, and results in damping of GAM. The increase ofδSkx,0 balancing
with decrease ofWkx,0 stems from the development offkx,0 in the micro velocity-scale, which
is revealed by the kinetic simulation with high velocity-space resolution. Diffusion of the fine
structures offkx,0 as well as slow collisional decay of

〈
φkx,0

〉
is also confirmed if the finite col-

lisionality is introduced (not shown). Collisionless zonal flow dynamics in helical systems is
also investigated based on the gyrokinetic theory and simulation [17].

5. Toroidal ITG Turbulence

Nonlinear gyrokinetic-Vlasov simulations of the toroidal ITG turbulence are carried out by
means of the flux tube model described in section 2. The used parameters are the same as those
in section 4 but with finite collisionality. A model collision operator with the Lenard-Bernstein
form averaged for the gyrophase is introduced, such as

C
(

fkx,ky

)
= ν

[
1

v⊥
∂

∂v⊥

(
v⊥

∂ fkx,ky

∂v⊥
+

v2
⊥

v2
ti

fkx,ky

)
+

∂
∂v‖

(
∂ fkx,ky

∂v‖
+

v‖
v2

ti

fkx,ky

)
− k2

⊥
Ω2

i

fkx,ky

]
,

(8)
whereν denotes the ion-ion collision frequency.

Color contour plots of the electrostatic potential obtained by the toroidal ITG turbulence
simulation are shown in Fig.3 for three different time moments, whereν = 10−3vti/Ln, Nθ = 4,
kx,min = 0.1715,kx,max= 5.145,ky,min = 0.175, andky,max= 1.75 (31×21 Fourier components
are involved in thekx-ky space, excluding their complex conjugates as well as modes employed
for de-aliasing). The minimum values ofkx andky correspond to∆q= 0.5 andNα = 10, respec-
tively, where∆q denotes a difference of the safety factor across the radial width. The toroidal
periodicity of Nα is also assumed [13]. In a latter phase of the linear growth of the ITG in-
stability (t ≈ 60Ln/vti), the zonal flow components are spontaneously excited, and reduce the
turbulence level. Vortices with a larger scale than that of the linearly most unstable mode dom-
inate in the turbulence and are mainly responsible for the ion heat transport. A statistically
steady turbulence is observed aftert ≈ 120Ln/vti with finite amplitudes of zonal flows.

The entropy balance in the ITG turbulence simulation is shown in Fig.4 (left), where time-
histories of four terms in Eq.(6) are plotted. The relative error∆/Di in the saturated turbulence
aftert ≈ 80Ln/vti is suppressed at 7-8% by use of high resolution, where 960 and 129×48 grid
points are employed in thez- andv‖-v⊥ space, respectively. Better balancing of Eq.(6) is found
for finer grid spacing,∆z, or for higher collision frequency,ν , since fine-scale fluctuations
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FIG. 4: Entropy balance (left) and ion thermal transport coefficientsχi (right) obtained by the toroidal
ITG turbulence simulation.

of δ f as well asφ are generated in the turbulence. In the steady turbulence, the collisional
dissipation nearly balances with the transport flux,ηiQi ≈−Di , in the same way as seen in the
slab ITG simulation [8]. The ion heat transport coefficient,χi ≡Qi/ηi , is shown in Fig.4 (right),
where the time-averaged value ofχi ≈ 1.4ρ2

i vti/Ln from t = 200 to 250Ln/vti in the saturated
turbulence is comparable with results of other gyrokinetic simulations for the Cyclone base case
(χi ∼ 2ρ2

i vti/Ln) [14].

The balance ofηiQi ≈−Di suggests that fine-scale structures ofδ f generated by the phase
mixing in the turbulence are dissipated by the finite collisionality. Velocity-space profiles of
Re( fkx,ky/φkx,ky) observed att = 250Ln/vti are shown in Fig.5 forky = 0.175 and 0.7ρ−1

i where
θ = z= 0 andkx = 0. The distribution function of the linear stable mode withky = 0.7 contains
small scale structures in the velocity space, while the velocity-space profile of Re( fkx,ky) for the
dominant long wavelength mode (ky = 0.175) is similar to that of the linear unstable eigenfunc-
tion. This means that the entropy variable produced in the macro velocity-scale by the unstable
modes driving the transport is transfered to and is dissipated in the micro scales by the finite
collision. It is remarked that the present gyrokinetic-Vlasov simulation with high velocity-space
resolution enables one to quantitatively study the entropy balance in the five-dimensional phase
space in association with the toroidal ITG turbulent transport, and is also expected to provide
detailed information on the distribution function for construction of a toroidal kinetic-fluid clo-
sure model [6].

6. Summary

We have studied detailed velocity-space structures of ion distribution functions and related
entropy balance in the collisionless damping of the zonal flow and GAM and in the toroidal
ITG turbulence, by means of the newly developed toroidal gyrokinetic-Vlasov simulation code
with high resolution. The present simulations on the zonal flow and GAM, which accurately
satisfy the entropy balance, successfully reproduce the neoclassical polarization of trapped ions
as well as the parallel phase mixing due to passing particles. During the collisionless damping
of GAM, finer-scale structures of the distribution function in the velocity space continue to
develop due to the phase mixing while preserving an invariant defined by a sum of the entropy
variable and the potential energy. Thus, the collisionless dynamics of the zonal flow and GAM
are comprehended in terms of a transfer process of the entropy variable from macro to micro
velocity-scales.
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FIG. 5: Velocity-space profiles of real part of the perturbed distribution function observed in the toroidal
ITG turbulence simulation att = 250Ln/vti for ky = 0.175 (left) and0.7ρ−1

i (middle) whereθ = z= 0
and kx = 0. The horizontal and vertical axes are defined byv‖ and

√
2µΩi , respectively. The cross-

sectional plots atµ = 0 are shown in the right panel where the linear eigenfunction forky = 0.175 is
also given for comparison.

Simulation results of the anomalous transport in the toroidal ITG turbulence, in attention
to the velocity-space structures of the distribution function and the entropy balance, are also
presented. The heat transport flux in the statistically steady turbulence is mainly produced by
vortices with long wavelengths, while fine velocity-space structures of the perturbed distribu-
tion function clearly appear in fluctuations with larger wavenumbers. Accordingly, the entropy
variable produced by the unstable modes with long wavelengths is transfered in the wave num-
ber and velocity spaces, and is dissipated by the finite collision. Thus, the statistically steady
turbulence is sustained, where the growth of the entropy variable and the potential energy is
saturated with a balance between the transport flux and the collisional dissipation.
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