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Abstract: Theories for equilibrium and stability of H-modes, and models for use within in-
tegrated modeling codes with the objective of predicting the height, width and shape of the
pedestal at the edge of H-mode plasmas in tokamaks, as well as the onset and frequency of
Edge Localized Modes (ELMs), are developed. A theory model for relaxed plasma states with
flow, which uses two-fluid Hall-MHD equations, predicts that the natural scale length of the
pedestal is the ion skin depth and the pedestal width is larger than the ion poloidal gyro-radius,
in agreement with experimental observations. Computations with the GS2 code are used to
identify micro-instabilities, such as electron drift waves, that survive the strong flow shear, dia-
magnetic flows, and magnetic shear that are characteristic of the pedestal. Other instabilities
on the pedestal and gyro-radius scale, such as the Kelvin-Helmholtz instability, are also inves-
tigated. Time-dependent integrated modeling simulations are used to follow the transition from
L-mode to H-mode and the subsequent evolution of ELMs as the heating power is increased. The
flow shear stabilization that produces the transport barrier at the edge of the plasma reduces
different modes of anomalous transport and, consequently, different channels of transport at
different rates. ELM crashes are triggered in the model by pressure-driven ballooning modes or
by current-driven peeling modes.

1. Introduction

Tokamak plasmas undergo a spontaneous self-organizing transition from a low (L-mode)
to a high confined state (H-mode) [1] when the heating power exceeds a critical value.
The improved confinement is believed to be caused by the generation of a shear (zonal)
flow, which is responsible for suppressing fluctuations and inhibiting transport. After this
transition, a very steep pressure gradient develops at the edge. The height of the pressure
pedestal is a natural figure of merit for energy confinement. Elucidation of the physics of
pedestal formation, and predicting its maximum achievable height are issues crucial for
magnetic fusion devices [2, 3]. Thus in this paper we present a model determining the
pressure pedestal width and maximum height for the double Beltrami H-mode equilibrium
restricted by ideal ballooning stability. Additional microinstabilities of H mode plasmas
which survive the shear-flow stabilization investigated using analytical theory and the GS2
code are also presented. Finally, results from two variations of an edge model developed
for use within integrated modeling codes with the objective of predicting the height,
width and shape of the pedestal at the edge of H-mode plasmas, as well as the onset and
frequency of Edge Localized Modes (ELMs), will be presented.
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2. Double-Beltrami equilibrium for H-mode

The theory of Mahajan and Yoshida [4] for the H-mode layer is extended to determine
specifically the scalings of the pedestal height and width with plasma parameters. The
centerpiece of this enterprise is the so-called double-Beltrami states (DB) obtained by
the interaction of the magnetic and velocity fields. Under well-defined conditions [4], the
self-organized DB state provides a description for the edge region of the H-mode plasma.

Starting with two-fluid Hall MHD equations in one-dimensional slab geometry (along the
radial direction denoted by x), the solution for the magnetic fields and the flow in the
edge boundary layer are given by [4]
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The total pressure is related to the magnetic field by the pressure balance condition

p+
Bs,zB0

4π
= 0 (4)

Here, λi=c/ωpi is the ion skin-depth. Equations (1)-(4) form an explicit and complete
solution except for a single undetermined quantity; the magnitude B∗ of the magnetic
field or equivalently the plasma pressure at the top of the pedestal. To determine this it
is stipulated that the H-mode state maximizes the pressure gradient consistent with the
ballooning stability criterion,

8πq2R
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0
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where q is the plasma safety factor R, the major radius and the parameter αc contains
the plasma shaping effects [3] in determining the stability of these modes. The pressure
pedestal height expressed as pedestal β, then, is
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with the pedestal width ∆ped given by

∆ped = λi (7)

Next we make quantitative comparisons of the pedestal height and width (if available)
with three machines using data in published literature. However before we do so we cast
the pedestal width and pedestal height into practical units which can facilitate comparison
with data. The pedestal width (in meters) is given by

∆ped =
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(8)

and the sum of the ion and electron temperatures (in keV) is
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FIG. 1. Te,ped for experimental points (black squares),
for model with constant pedestal width (dotted line),
for model with pedestal width proportional to larmor
radius (dashed line), for Sugihara model for pedestal
width (open circles), for theory (red line) versus nped

for JET discharges

The density is normalized to 1020/m3, the major radius is in meters and the magnetic field
in Tesla. Z is the ionic charge and AH is the ion atomic mass relative to hydrogen. The first
comparison is with data from JET [5, 6]. The data is for discharges with high elongation
and triangularity and IP = 2.5 MA and BT = 2.3 T . All these discharges displayed type
I ELMy behavior. In Fig. 1, the black squares are experimental data points, the dotted
and dashed curves show the pedestal temperature for constant pedestal width and for
pedestal width scaling with the Larmor radius scale width respectively. The open circles
are for the pedestal width given by the Sugihara model [5]. Since the data set does not
include the ion temperature, we have assumed that the electron and ion temperatures
are equal. This is expected to be true for the high density discharges but not so for the
lower density cases. The solid line is a fit to the data for αc/q

2 = 0.9 using Equation (9).
If q=2.5 at the top of the pedestal then αc = 7. This is consistent with ballooning mode
stability studies which indicate that for low elongation and triangularity αc = 3−4, while
for high elongation and triangularity αc = 6 − 8.

FIG. 2. (a) Data points
Te,ped(red), Ti,ped(blue),
Te,ped + Ti,ped(green)
Theory (Te,ped +
Ti,ped)Th(magenta
line) versus nped, (b)
Pedestal width ∆,
data(red), theory(blue),
banana-width(green)
versus nped for JT-60U
discharges

In Fig. 2(a) and (b) is shown data from JT-60U [7] and its comparison with the theory.
For these Type I ELMing discharges, Ip = 1.8 MA and BT = 3 T . These discharges
had small elongation and triangularity. In Fig. 2(a) the temperature at the top of the
pedestal is plotted as a function of the pedestal density. The red points are the electron
temperature while the blue points are the ion temperature. The green points are the sum
of the ion and electron temperatures at the top of the pedestal. The magenta curve is a fit
to the data using αc/q

2 = 0.22 in Equation (29). If we assume that q=3.5 at the pedestal
height, then αc = 2.7 which is a low value to be expected for these low elongation and low
triangularity discharges. What is clearly seen from the data is that the electron and ion
temperatures at the top of the pedestal are equilibrated for the high density discharges
but not for the low density ones. Plotted in Fig. 2(b) are the experimental pedestal width
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(red points), the theoretical pedestal width (blue points) given by Equation (8), and the
banana width (green points) as a function of the pedestal density.

FIG. 3. Te,ped for experimental points (red crosses), for
ballooning-peeling stability theory (blue line) and for
theory (green line) versus nped for DIII-D discharges

Finally in Figure (3) the theory is compared with data from DIII-D. The red crosses are
the experimental data for DIII-D discharges in the Type I ELM regime with Ip = 1.225
MA and BT = 2 T [8]. The blue curve is based on a ballooning stability calculation of
the discharges using the ELITE code. Once again since the ion temperature is not known
we have assumed that the electron and ion temperatures are equal. Using Equation (9)
with αc/q

2 = 0.31, yields the green theory curve.

3. Stability of H-mode pedestal to non-curvature driven modes

In this section we address the linear stability of simple slab plasma configurations without
magnetic curvature using gyrokinetic simulations based on the GS2 code as well as analytic
calculations. The configurations are characterized by sheared E×B and diamagnetic
flows, weak collisionality, and finite magnetic shear, and are intended to model some of
the salient features of the H-mode edge pedestal. Here we provide only a basic summary
of the main results from a longer article [9].

Our simulations indicate the potential importance of at least three instabilities: the
Kelvin-Helmholtz instability, the tertiary mode [10], and a non-local driftwave instability.
These instabilities are all global modes, in the sense that they are all fundamentally de-
pendent on non-local variations of the background “equilibrium” quantities, and are all
absent from local simulations in which the background plasma gradients and the E×B
shear V ′

E (if present) are spatially constant. We now summarize some of our main results
in each case.

3.1. Kelvin-Helmholtz instability

The Kelvin-Helmholtz instability is potentially the strongest instability of the three modes.
In the absence of magnetic shear and ion diamagnetic effects the most unstable eigenmode
has a typical growth rate γ ∼ VE/∆ (∆ is the total pedestal width) for a wavenumber
k ∼ 1/∆ in the direction of VE. In the presence of magnetic shear, however, the mode
can be stabilized if the pedestal width ∆ is sufficiently wide. Assuming Ls = qR/ŝ and
V ′

E,max = 2VE/∆ (∆=full pedestal width) this stability condition may be written as:

∆ >∼ 1.6ρi

(
qR

diŝ

VE

V∗i0

)1/2

(stable) (10)

Here di = c/ωpi is the ion skin depth and V∗i0 = 2ρiVthi/∆ is the typical ion diamagnetic
velocity in the pedestal. Evaluating this condition for typical H-mode edge parameters in
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DIII-D and Alcator CMOD yields a marginally stable pedestal width ∆crit ∼ 10ρi. The
similarity of this to observed values implies the Kelvin-Helmholtz instability in the H-mode
edge is in fact near marginal stability due to the magnetic shear alone. Our analysis shows,
however, that there is also another potentially important stabilizing factor in the H-mode
edge, namely, ion diamagnetic effects. In the most unstable case of k‖ = 0 (no magnetic
shear), ion diamagnetic effects alone can stabilize the mode if the ion diamagnetic velocity
V∗i is at least comparable in magnitude to the E×B flow VE and in the opposite direction.
Typical edge profiles in experiments, as well as numerical simulations, suggest that such
a balance, or partial balance, may indeed apply. Our final conclusion is therefore that the
Kelvin-Helmholtz instability is suggestively close to marginal stability in the H-mode edge
but that a more detailed comparison of simulations to experiments is needed to determine
its actual role.

3.2. Tertiary mode

The tertiary mode, in contrast to the Kelvin-Helmholtz instability, arises at high-k‖ and
is characterized by an adiabatic electron response. It is driven by the ion temperature
gradient, is radially localized by the E×B shear, and is insensitive to the magnetic shear.
The equilibrium density gradient, discussed in detail in Ref. [9], also plays a complex role.
Assuming the E×B velocity VE and the ion diamagnetic velocity V∗i are comparable in
magnitude, it has a typical radial width ∼ √

ρs∆, a growth rate γ ∼ (ρs/∆)1/2VE/∆ that
is smaller than that of the Kelvin-Helmholtz mode, and a frequency ω � kVE. According
to the GS2 simulations, this mode can be stabilized by finite Larmor radius (FLR) effects
when ∆ ∼ (5 − 10)ρi. Since the widths of experimental edge profiles typically approach
this range, the tertiary mode in the edge region, like the Kelvin-Helmholtz instability, is
a potentially important mode in the H-mode edge. A more detailed study is planned.

3.3. Drift wave instability

The nonlocal driftwave instability is a linear, edge-global version of a nonlinear driftwave
mode that has been widely studied in local turbulence simulations of the edge region [11]-
[14]. These turbulence simulations are typically carried out in the presence of spatially
constant plasma gradients and magnetic shear, and as is well known [15], radially local-
ized, linearly unstable driftwave eigenmodes do not exist in such systems. Nonlinearly,
however, driftwave physics is hypothesized to play an important role in driving small-scale
turbulence at H-mode-like parameters in the edge region, where resistive ballooning modes
are expected to become weak [11]-[14]. We find here that in the presence of more realistic
pedestal-like profiles in either the E×B velocity and/or the density gradient, a robustly
unstable, radially localized linear eigenmode reappears in the simulations, with or without
magnetic shear. This result is consistent with past theoretical studies of driftwaves going
back for decades, which have shown that strong spatial variations in the density gradient
[16]-[20] can overcome the damping introduced by magnetic shear. Here, to obtain a the-
oretical description of the mode that is in reasonable agreement with the GS2 simulations
for edge-like parameters, we needed to go beyond past work and include in our analytic
calculations the contributions from electron Landau damping, electromagnetic effects, as
well as the spatial variation in the E×B velocity, density and temperature profiles. In-
cluding these effects and considering the simplest case of quasi-local modes with k∆ � 1,

the linear eigenfunction becomes a simple Gaussian with radial mode width
√

∆/k < ∆.

Typical maximum growth rates are γmax ∼ (0.1 − 0.2)ω∗e,n for k‖ ∼
√
βkρs/∆. Since the

mode remains robustly unstable down relatively large scale lengths k ∼ 1/∆ despite the
presence of E×B and magnetic shear, our conclusion in this case is that the drift-wave
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mode seems to be a strong candidate for driving anomalous transport in the H-mode edge
of either toroidal or linear confinement devices.

4. Integrated modeling of the pedestal and ELMs

Two variations of an edge model have been developed for use within integrated modeling
codes with the objective of predicting the height, width and shape of the pedestal at the
edge of H-mode plasmas in tokamaks, as well as the onset and frequency of Edge Localized
Modes (ELMs).

One version of the edge model has been implemented in the JETTO code [21]. In the
JETTO model, the ion thermal neoclassical diffusivity is used to compute all the chan-
nels of transport within the pedestal. The MHD stability criterion that triggers ELM
crashes is calibrated in each simulation using the HELENA and MISHKA stability codes.
Simulations of a JET triangularity scan using this model reproduce the experimentally
measured pressure profiles and demonstrate a transition from first to second stability as
the triangularity of the plasma is increased [22], and simulations of a JET power scan
show that the pedestal height and ELM frequency increase with increasing heating power
as observed in the experiment [23]. In some of the JETTO simulations, it is shown that
there is a transition from ELMs that are initially triggered by pressure-driven ballooning
modes to ELMs triggered by current-driven peeling modes [24]. Recent simulations of a
deuterium to tritium isotope scan with the JETTO model have produced quantitative
agreement with experimental data for the pedestal height and ELM frequency.

A new edge model has been developed and implemented in the ASTRA code to predict the
width and shape of the pedestal in addition to the pedestal height and the ELM frequency
[25]. In this model, the anomalous thermal transport driven by long wavelength ion drift
modes (ITG/TEM) is reduced by flow shear, which reduces the electron thermal transport
to values that are close to the transport driven by electron temperature gradient (ETG)
modes and reduces the ion thermal transport to values that are close to neoclassical
transport. The main contributions to the electron and ion thermal diffusivities (χe and
χi) are

χe =
χITG/TEM

e

1 + CITG/TEM(ωE×Bτ ITG/TEM)2
+ χETG

e (11)

χi =
χ

ITG/TEM
i

1 + CITG/TEM(ωE×Bτ ITG/TEM)2
+ χneoclassical

i (12)

where χ
ITG/TEM
e,i are the electron and ion thermal diffusivities computed using the Wei-

land model for ion drift modes [26], CITG/TEM is a calibration coefficient for the fow shear
stabilization, ωE×B is the flow shear rate, τ ITG/TEM is the turbulence correlation time,
which is estimated to be the reciprocal of the fastest ion drift mode growth rate, χETG

e

is the electron thermal diffusivity driven by ETG modes, and χneoclassical
i is the ion ther-

mal neoclassical diffusivity. ELM crashes are triggered whenever the pressure gradient
anywhere within the pedestal exceeds the critical pressure gradient for short-wavelength
ballooning modes

2µ0R(q/B)2(dp/dr) > 0.4s[1 + κ2
95(1 + 5δ2

95)] (13)

or whenever the current density anywhere within the pedestal exceeds the peeling mode
stability criterion (which is also a function of the pressure gradient) [27]
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1
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>

√
1 − 4Dm. (14)
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In these relations, R and r are the major and minor radius, q is the safety factor, B
and Bp are the toroidal and poloidal magnetic field, p is the thermal pressure, Dm is the
Mercier coefficient, which is proportional to the pressure gradient, Ck is a coefficient that
is introduced to reproduce the effects of the vacuum region and plasma shaping, ψ is the
poloidal flux, and J‖ is the parallel plasma current density. When each ELM crash occurs,
the edge profiles are changed instantaneously on the transport time scale, and then the
pedestal profiles rebuild as a result of the flow shear stabilization during the remainder
of the ELM cycle [25].
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FIG. 4. Time evolution of the ion and electron temperature at the top of the pedestal
for a low power (left panel) and high power (right panel) discharge using typical DIII-D
parameters.

As the heating power in a simulation is increased as a function of time, the model predicts
a transition from L-mode to H-mode, with the formation of an edge transport barrier and
resulting pedestal at the edge of the H-mode plasma. As the heating power is increased
further, there is a transition from an ELM-free H-mode to a type I ELMy H-mode,
as shown in Fig. 1. It can be seen in Fig. 4 that the ELM frequency increases with
increasing heating power, which is a characteristic of type I ELMs. In addition, the
ion temperature at the top of the pedestal increases moderately with increasing heating
power (T ped

i ∝ (heating power)0.3), which is consistent with experimental observations
[28]. The scaling of the pedestal temperatures with magnetic field and plasma density are
also consistent with experimental data [25]. During the calibration of this model against
experimental data, it was observed that changes in the flow shear rate coefficient CITG/TEM

have little effect on the pedestal height or ELM frequency, once the coefficient is large
enough. The stability criterion used to trigger ELM crashes, however, has a significant
effect on the pedestal height and ELM frequency.

Summary

The present paper addresses the equilibrium, stability and integrated modeling of the
edge region of H-mode plasmas. The double-Beltrami equilibrium state together with the
ideal ballooning stability criterion yields a prediction for the pedestal width and height,
which compare favorably with some observations on current machines. Linear drift-wave
eigenmodes are found to be robustly unstable in the H-mode edge region despite ExB and
magnetic shear effects. They are therefore potentially the main driver of transport in the
(H-mode) edge of toroidal or linear devices. Finally results from two edge models, one
using the JETTO code in combination with the HELENA and MISHKA stability codes
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which provide conditions for an ELM crash, and a second edge model using shear-flow
modified transport coefficients implemented in the ASTRA code, have been presented.
Good agreement of modeled ELM characteristics with observed behavior has been found,
with strongest sensitivity to the stability criterion used to trigger ELM crashes.
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