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Abstract. The internal kink mode is commonly present in tokamak plasmas and is often responsible for sawtooth 

instabilities. The presence of fast ions in the plasma, such as those generated by auxiliary heating, may not only 

affect sawtooth behaviour but also cause the appearance of fishbone oscillations which are caused by different 

branches of the internal kink dispersion relation. There are principally two different methods that are used to 

analyse the internal kink mode stability in the presence of fast ions. The first is based on a perturbative approach 

and in this case, the fast ions’  energy functional is taken as a perturbation of the ideal MHD functional. The use of 

numerical codes like the new version of the CASTOR-K code then allows an accurate calculation of the 

perturbation on the mode growth rate. The second method is based on a variational formulation where the full 

dispersion equation including diamagnetic effects is solved using simplified expressions for the fast ions’  energy 

functional and the fast ions’  distribution function. The marginal stability equation allows then the determination of 

the regions of stability for each of the solutions in the space of parameters. In this paper both methods are 

described and applied to analyse JET experiments were both sawteeth and fishbone stability changed during the 

discharge.  

 
1. Introduction 
 
Internal kink modes are commonly observed in tokamak experiments. The most unstable is the 
n=1, m=1 (toroidal and poloidal mode numbers) which is associated with the q=1 surface, q 
being the safety factor. This mode is always unstable in cylindrical geometry if the safety 
factor on axis 0q  is below unity and though toroidal effects are stabilizing, the mode is still 
potentially unstable in all tokamaks. It is often associated with the occurrence of sawteeth [1], 
but fishbone oscillations [2] can also be caused by different branches of the internal kink 
dispersion relation [3]. In future tokamaks like ITER, where the q=1 radius is expected to be 
large, instabilities caused by n=1, m=1 internal kink modes can involve the displacement of 
large portions of plasma. These instabilities may reduce the discharge’s performance and, aside 
from that, the occurrence of a monster sawtooth crash after a period of stabilization can be 
hazardous. It is therefore important not only predict when the different branches of the 
dispersion relation can be unstable but also try and develop methods to control the related 
instabilities. The presence in the plasma of ICRH driven fast ions is known to strongly affect 
the internal kink stability [4]. These ions, under usual conditions of tokamak operation, are 
predicted to have a destabilizing effect over fishbones and a stabilizing effect over sawteeth. 
However, it is possible to change heating characteristics or plasma parameters in order to 
modify these effects, allowing some control over these instabilities. In the ideal MHD 
framework, when the minimized variational energy for the internal kink displacement [5] is 
negative, 0<MHDWδ , the normal modes problem allows two solutions, one stable and one 
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unstable, both with 0)Re( =ω , where ω  is the complex frequency. The unstable solution will 
be referred to as the kink mode and its growth rate is given by MHDAI Wδωγ −= , where Aω  is 
the Alfven frequency. The stable solution 0)Im( <ω , if physical, corresponds to the ion mode. 

Iγ  is then defined as the growth rate of the unstable mode associated with 0<MHDWδ . Taking 
into account diamagnetic effects, the dispersion relation for the internal kink mode is given by 

( )[ ] 021 =−+ ∗iI i ωωωγ  [6], where i∗ω  is the bulk ion diamagnetic frequency. If i∗ω  is finite, 
the kink and ion modes are no longer purely growing (damped) and acquire real frequencies. 
When increasing i∗ω  the growth and damping rates of the kink and ion branches decrease until 
for Ii γω 2>∗  both branches become marginally stable. If the plasma contains fast particles, 
these particles can provide a viscous effect that taps the energy related to the bulk ions’  density 
gradient destabilizing the ion branch. This branch, when unstable, causes fishbone bursts to be 
observed with a mode frequency i∗≈ ωω)Re(  [7], [8]. Including the hot particles’  energy 
functional HOTWδ  in the dispersion relation a new branch appears in its solution, the 
(precessional drift) fishbone branch [9]. The growth rate of this mode goes to ∞−  as the fast 
particles β  (kinetic pressure / magnetic pressure) goes to zero but becomes unstable when hβ  
is above a critical value hch ββ > . This branch is responsible for fishbone oscillations with a 
mode frequency Dωω ≈)Re( , where Dω  is the average precessional drift of fast ions. 
Usually the regime of low frequency fishbones i∗≈ ωω)Re(  (diamagnetic fishbones will be 
adopted here) is observed for low values of hβ  while the regime of high frequency fishbones 

Dωω ≈)Re(  (precessional fishbones) is observed for high values of hβ  being both regimes 
separated by a stable window on hβ  [10]. 
 
In this paper it is analysed how ICRH driven fast ion populations can affect the n=1, m=1 
internal kink stability through the inclusion of the hot particles energy functional HOTWδ  in the 
appropriate equations. For this two different methods are used. The first is based on a 
perturbative approach, HOTWδ  being taken as a perturbation of the ideal MHD functional 

MHDWδ . The use of numerical codes then allows an accurate calculation of HOTWδ  as a function 
of several parameters. In the limit 0/ →Dωω  it is possible to evaluate how sawtooth 
stabilization by fast ions depends on these parameters. The second method is based on a 
variational formulation where the full dispersion equation is solved for a large aspect ratio 
circular cross-section, using simplified expressions for the fast ions’  energy functional and fast 
ions’  distribution function. The marginal stability equation allows then the determination of the 
regions of stability for each branch of the internal kink dispersion relation in the space of 
parameters. 
 
2. Method perturbative  
 
The effect of a fast ion population on the kink mode can be analysed using a perturbative 
approach where HOTWδ  is taken as a perturbation of the ideal MHD functional MHDWδ , 
 

HOTMHD WWW δδδ += .                                                                                                               (1) 
 
The eigenfunction is determined by minimizing only the MHD functional MHDWδ  and is later 
used to calculate HOTWδ . With this it is possible to accurately calculate HOTWδ  using numerical 
codes. A new version of the CASTOR-K [11] code has recently been developed in order to 
calculate HOTWδ  for ICRH driven fast ion populations. The CASTOR-K code uses the 
eigenfunction calculated by the ideal MDH code MISHKA [12] or the resistive MHD code 
CASTOR [13] and the equilibrium calculated by the HELENA code [14]. The fast ion 
distribution function is assumed to be characterized by a single value of the normalized 
magnetic momentum EB /0µλ = , where µ  is the magnetic momentum Bmv 22

⊥=µ , 0B  is 
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the magnetic field on axis and E  is the particle energy. This corresponds to considering a 
population of particles with potato orbits ( 0<φP ) and banana orbits with turning points 
located over the ICRH resonant layer, λ  being given by the ratio between the ICRH resonance 
radius and the major radius RRres /=λ . The energy distribution is assumed to be a Maxwellian 
characterized by a temperature HOTT  and the radial distribution is introduced as a polynomial 
function of adjustable parameters. In the limit 0/ →Dωω  the perturbation on the mode 
growth rate due to fast ions is given by:  
 

k

HOT
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1−= ,                                                                                                             (2) 

 
where Ek is the kinetic energy of the mode. This limit is adequate to study the effect of fast ions 
on sawtooth stability. The new version of the CASTOR-K code calculates both the adiabatic 
part ad

HOTWδ  and the non-adiabatic part na
HOTWδ  of the fast ions’  functional HOTWδ  taking into 

account the large size of their banana orbits and potato orbits [15],  
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The adiabatic part of HOTWδ  traduces a fluid effect that is expected to be destabilizing. The 
non-adiabatic part of HOTWδ , in the limit 0/ →Dωω , is mainly due to the conservation of the 
third adiabatic invariant and is usually stabilizing. Sawtooth stabilization can then occur if this 
stabilizing effect is strong enough to overcome destabilizing effects. The CASTOR-K code 
allows HOTWδ  to be calculated as function of several parameters, like the fast ions’  temperature 

HOTT , the location of the ICRH resonant layer ( RRres /=λ ), the safety factor on axis (or the 
q=1 radius assuming a fixed q profile) and 
the fast ions’  radial profile. Thus, it is 
possible to analyse the dependence of 
sawtooth stabilization by fast ions on any of 
these parameters. As an example, Fig. 1 
shows the perturbation on the kink mode 
growth rate originated by the non-adiabatic 
part of HOTWδ  as a function of the safety 
factor on axis (or q=1 radius having 
assumed a fixed q profile) and the fast ions’  
temperature HOTT  for a typical JET 
equilibrium with on-axis heating. Numerical 
results show that for relatively small values 
of the q=1 radius 1r , the stabilizing effect 
related with the non-adiabatic part of 

HOTWδ  tends to disappear as HOTT  increases 
but when the q=1 radius is large the 
stabilizing effect does not vanish. In this  
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Figure 1: Perturbation on the kink mode growth rate 

due to the non adiabatic part na
HOTWδ  as function of 

the fast ions temperature and safety factor on axis 

for a fast ions profile peaked in the center. Blue 

regions are stabilizing and red destabilizing.  

case the size of the fast particles’  orbits is still small when compared to that of the q=1 radius 

1r . Numerical simulations also show that when the q=1 radius is very small, the stabilizing 
effect of particles with potato orbits ( 0<φP ) becomes increasingly important. The adiabatic 
part of HOTWδ  gives a destabilizing contribution that increases with HOTT . 
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3. Method variational  
 
Another possible approach is to solve the full variational problem making the necessary 
simplifications. The dispersion relation including fast ion, resistive and finite Larmor radius 
effects for a large aspect ratio circular cross-section is given by [3], [16-19], 
 ( )[ ] ( )[ ]

( )[ ] 0
41

458
2/34/9

212/3

=
−ΛΓΛ

−+ΛΓ−+ ∗

A

i
HOTMHD

i
WW

ω
ωωωδδ                                                                (5) 

 

where, ( )( )[ ] Riei γωωωωω 31ˆ ∗∗ −−−=Λ , AR S ωγ 31−=  is the resistive growth rate, S is the 

magnetic Reynolds number, Aω  is the Alfven frequency, e*ω  is the electron diamagnetic 

frequency ( ) drdPBren eee
1−

∗ =ω , Pe and ne are the electron pressure and density respectively 

and ( ) drdTeBr eee
171.0ˆ −

∗∗ += ωω . The Euler gamma functions in equation (5) come from 

the inertial layer and are evaluated at the q=1 surface. For a Maxwellian distribution in energy 
and a population characterized by a single normalized magnetic momentum 1=λ  (on-axis 
heating), in the ideal limit the threshold condition ( ) 0Im =ω , i.e. the condition for which the 
stability of the mode changes, is given by  
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with the corresponding value of hβ  given by, 
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When i∗ω  and Dω  are of the same order of magnitude, hβ  is a monotonic function of ω and 

equation (6) has two solutions provided that MI γγ < , where Mγ  is the maximum possible 
value for the right hand side of equation (6). With this it is possible to determine the regions of 
stability for each branch of the internal kink dispersion relation (5) in the space of parameters 
( Iγ , i∗ω , hβ ). The stability diagram in the plan ( Iγ , hβ ), with i∗ω  as a parameter, is presented 

in Fig 2. 

 

 
 
 
Figure 2: Regions of stability for the different 
branches of the internal kink dispersion relation in 
the space of parameters (

hβ , Iγ , i∗ω ). In regions 
labelled with a K the kink branch is unstable, with an 
I the ion branch is unstable and with an F the 
fishbone branch is unstable. In region C the fishbone 
branch coalesces with one of the low frequency 
branches (in this case the kink branch). 

 
To complete the diagram, the lines corresponding to sawtooth destabilization due to finite orbit 
width effects and resistive effects are added to the diagram, since these effects are not included 

2
i

I
∗= ωγ

βh=βhc ββββh 

 γγγγI

MI γγ =



TH/5-3 5

in equation (6). Resistive effects are only important when Iγ  is small, making the kink branch 
unstable. Finite orbit width effects may reduce the efficiency of stabilization by fast ions also 
allowing the kink branch to be unstable. With this, it is possible to analyse qualitatively (or 
predict) the stability of the different branches during a discharge, if the evolution of the 
parameters ( Iγ , i∗ω , hβ ) is known or could be estimated. The growth rate of the precessional 

fishbone mode can be calculated by numerical code that has been recently developed [20]. 

4. Applications - Sawteeth 
 
Recent JET experiments with ICRH only 
and low density plasmas have shown that 
sawteeth were stabilized when the plasma 
density was increased above a threshold 
value [21]. Sawteeth were also stable 
during the initial part of the ICRH ramp 
phase and were destabilized as the ICRH 
power increased (see Fig. 3). Comparing 
the equilibrium conditions and the mode 
eigenfunction calculated by the MISHKA 
code no significant changes could be found 
between the situations where sawteeth 
were stable and unstable. This suggested 
the loss of stabilization at low plasma 
densities should be related with changes in 
the fast ions distribution function. Since  
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Figure 3: Temporal evolution of the electronic 
temperature, ICRH power and safety factor on axis 
during the RF ramp phase in pulse #54306.

the ICRH resonant layer was not moved and changes in the radial distribution were not 
expected, changes in sawteeth behaviour must have been related to changes in the fast ions 
energies. In fact, the Stix model [22] predicts the fast ions temperature to be proportional to 
the ratio between the volume-averaged ICRH power density and the plasma density 

eICRH nP / . Calculations of the temporal evolution of the fast ions temperature HOTT  have 

shown that sawteeth destabilization during the ICRH ramp phase coincided with an increase 
in HOTT  and the later stabilization coincided with a decrease in HOTT . Numerical simulations 

with the CASTOR-K code have confirmed that for these specific discharges the stabilizing 
effect of na

HOTWδ  over sawteeth decreases significantly as the fast ions temperature HOTT  

increases, while on the other hand the destabilizing effect of ad
HOTWδ  increases. It is then 

plausible that for sufficiently high fast ions temperatures na
HOTWδ  becomes too small to 

overcome the destabilizing effects. 
 
5. Applications - Fishbones 
 
In the same set of experiments fishbone activity was also observed along with sawteeth. 
Periods of frequent sawteeth crashes were always accompanied by high frequency precessional 
fishbones with a frequency Dωω ≈)Re( . When sawteeth were stabilized and frequent crashes 

ceased, these fishbone bursts were gradually replaced by low frequency diamagnetic fishbones 

i∗≈ ωω)Re( . The occurrence of a monster sawtooth crash restored the original high frequency 

fishbones (see Fig. 4).  
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Figure 4: Spectrogram of MHD activity in pulse #54301 
 
Sawteeth, diamagnetic and precessional fishbones are all caused by different branches of the 
solution of equation (5) and, in the ideal limit, the stability of these branches are governed 
mainly by the parameters ( Iγ , i∗ω , hβ ). Measuring or estimating the evolution of the 

parameters ( Iγ , i∗ω , hβ ) it is possible to explain the behaviour of these instabilities. In these 

discharges the regime where small sawteeth and precessional fishbones were observed must 
then correspond to the region of Fig. 2 where hch ββ > . In this region the kink branch as given 

by equation (5) should be stable, but this equation doesn’ t take account finite orbit width 
effects. These effects may allow the branch to be unstable. When the plasma density 
increases, the particles energy decrease reducing the size of the orbits. With this sawteeth may 
be stabilized but the fishbone branch remains unstable if hch ββ > . Stabilizing sawteeth stops 

the frequent crashes and both Iγ  and i∗ω  are allowed to increase. On one hand magnetic 

diffusion causes the radius of the q=1 surface to increase ( Iγ  scales with 3
1r  [23]) and on the 

other hand the absence of crashes allows the bulk ion profile to peak causing the diamagnetic 
frequency i∗ω  to increase. The effect of an increase in i∗ω  in the graphic of Fig. 2 is to move 

up the line 2iI ∗= ωγ  and to reduce the maximum Mγ  moving down the line MI γγ = . With 

Iγ  increasing and Mγ  decreasing the condition MI γγ >  will eventually be reached and when 
this happens the low frequency branch coalesces with the high frequency branch forming a 
single coalescent unstable branch. If 2iI ∗> ωγ  the coalescent branch is the kink-fishbone, 

while if 2iI ∗< ωγ  the coalescent branch is the ion-fishbone. The coalescent branches behave 

like the fishbone branch for high values of hβ  and like the kink or ion branches for low 

values of hβ . To say it differently, increasing hβ  pushes the coalescent branch towards the 

fishbone mode behaviour while increasing Iγ  ( i∗ω ) pushes the mode toward the kink (ion) 

modes behaviour. Experimentally, after conditions MI γγ >  and 2iI ∗< ωγ  were reached, the 

coalescent mode still behaves as the precessional fishbone mode but this changes gradually as 

i∗ω  increases. During each burst, hβ  decreases temporarily inside the q=1 surface since fast 

ions are expelled from the plasma core. If hβ  decreases enough, the mode behaviour may 

change from precessional to diamagnetic and a burst that started as precessional ends as 
diamagnetic. This mechanism is illustrated in Fig. 5. As consequence, hybrid fishbones with 
characteristics of both high and low frequency types that cover both ranges of frequencies are 
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observed (see Fig. 4 around t= 9.6 s). Every hybrid burst corresponds to a single event (see 
Fig. 6).  

 
 
 
Figure 5: Schematic diagram of the solutions of the dispersion relation (5): Mode growth rate as function of the 
fast particles beta. 
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Figure 6: Temporal evolution of 

•

B
~ for a single burst of hybrid fishbones (#54300). 

 
Continuing to increase the diamagnetic frequency i∗ω  brings the ion-fishbone branch to a 

regime where none of the behaviours dominates. When this happens both types of bursts can 
be triggered independently and they even occur simultaneously (see Fig. 4 around t= 9.75 s). 
Further increasing i∗ω  the coalescent branch acquires the ion mode behaviour and only 

diamagnetic fishbones are observed. Diamagnetic fishbones activity ends when a monster 
sawtooth crash occurs. Since Iγ  scales with 3

1r , a monster sawtooth crash would occur when 

the q=1 radius 1r  increases enough to verify 2iI ∗> ωγ . The crash flattens the bulk ions’  

profile and reduces the q=1 size, restoring the original values of both Iγ  and i∗ω . Precessional 

fishbones reappear and the whole cycle is repeated. Since the increase of the diamagnetic 
frequency is the base for the fishbone’s cycle it is important to estimate its evolution along the 
cycle. The frequency in the laboratory frame rotiiLAB ff += ∗∗ πω 2  for the regime where 

frequent sawteeth crashes was estimated to be below 3 kHz. Since the diamagnetic bursts are 
initiated with a frequency around i∗≈ ωω)Re(  it is possible to observe that this value increases 

to around 10 kHz when diamagnetic fishbones are first observed and to near 20 kHz just before 
the monster sawtooth crash. This confirms that a steady increase of i∗ω  occurs during the 

period of time between the crashes of monster sawteeth. 
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6. Summary and conclusions 
 
A numerical code, using a perturbative approach, was employed to accurately calculate the 
hot particles functional HOTWδ  as function of several parameters for a realistic geometry. In 

the limit 0/ →Dωω  this allows the analysis of how sawtooth stabilization by fast ions 

depends on these parameters. Results show that the stabilizing effect associated with the non-
adiabatic part of HOTWδ  vanishes for small values of 1r  but not for larges values of 1r  while 

the destabilizing effect associated with the adiabatic part of HOTWδ  increases with HOTT . It 

was also shown that particles with potato orbits ( 0<φP ) become important if the q=1 radius 

1r  is very small. A variational approach was also used for a qualitative analysis. This method 
requires several simplifications but allows one to predict the stability of all branches, which 
depends mainly on ( Iγ , i∗ω , hβ ). A new type of fishbones that covers both high and low range 

of frequencies was identified. These hybrid fishbones are caused by the coalescent ion-
fishbone mode. 
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