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Abstract Several topics in the study of Alfvén waves and their  interaction with energetic particles are reported. (1) In the second
stability regime a new Alfvénic mode (α−TAE) has been found that exists even in the continuum with negligible intrinsic
damping and its destabilization by energetic particles is discussed. (2) The alteration of the continuum due to pressure
compressibility is found to set a lower frequency limit on the Cascade modes at the value 

�
2CS/R. (CS is the sound speed).

(3)Neutral beams planned for ITER is found to contribute to a linear instability drive that is nearly equal to the alpha particle
drive and the inferred current generated may allow spatially extended TAE eigenmodes to be excited. A quasilinear model is used
to estimate alpha particle losses. (4) The rate of frequency sweeping of TAE modes excited on MAST has been used to estimate
internal fields leading to results that are compatible with Mirnov coil mearsurements. (5) A numerical model, developed to
attempt to understand damping due to kinetic Alfvén excitations of TAE modes, did not produce KAW’s in the plasma center and
the  dominant damping mechanism came from the continuum resonance arising from the decrease of density at the plasma edge.

1. Introduction
The self-consistent response of energetic particles in fusion plasmas is a very important area to

understand when burning plasma conditions are achieved especially under advanced tokamak (AT)
operation. In this presentation we review some recent progress made on the study of the self-consistent
interaction of energetic particles with Alfvén waves which includes conditions of interest in AT
operation. In section 2 we discuss instability caused by energetic particles on a new Alfvén wave
(α-TAE) that can be generated in second stability operation. In section 3 we report on the modification of
the lower frequency range of the Cascade mode that is readily triggered in reversed shear operation at
finite β. In section 4 we discuss the effect of MeV beams, which are planned to be used for current drive
in ITER, on the TAE instability in a burning plasma. In this section a brief description is also given of
expected broadening of alpha particles due to their quasi-linear relaxation to TAE excitation. In section 5
we discuss how internal fields have been inferred on MAST by observing fast frequency sweeping of
TAE modes. In section 6 we discuss a relatively simple numerical model that attempts to understand the
source of damping due to mode conversion that has been reported in several large numerical codes.
2. New Toroidal Alfvèn Modes
             Alfvènic instabilities have been investigated in the high-β  second ballooning stable regime using
a gyrokinetic-MHD hybrid simulation code. Here, β is the ratio between plasma and magnetic pressures.
The physical model is formulated for a two-component (core and energetic) plasma employing the high-n
ballooning-mode representation and the (s, α) model equilibrium where s is the magnetic shear and α  the
standard plasma pressure gradient parameter. The core component is treated as an ideal MHD fluid,
which supports the Alfvén eigenmode while the energetic component provides the kinetic instability
drive. We find a new type of discrete Alfvén -ballooning eigenmode, the α−TAE, which is destabilized
by energetic particles via wave-particle resonances. This mode is trapped inside the α-induced potential
wells and it experiences negligible continuum damping even at frequencies far from the toroidal Alfvén
frequency gap [1]. The mode exists even without energetic particles as distinguished the modes from the
EPM (energetic-particle modes). Instability is driven by the typical resonance of a wave with the
precessional and/or bounce frequencies of the energetic particles. For an axisymmetric toroidal plasma
with a large aspect ratio (i.e., ε  = a/R « 1) and shifted circular magnetic surfaces, the Alfvén -ballooning
instabilities are governed by the generalized vorticity equation [2,3],
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where ωA = VA /(qR), VA is the Alfvén speed, ε0 = 2(ε + d∆/dr), ∆ is the Shafranov shift, q is the safety
factor, qE and mE are, respectively, the charge and mass of energetic particles, ωd  = ωκ + ωp = kΘΩd, ωκ

and ωp are, respectively, the curvature and gradient drift frequencies of energetic particles,
J0 = J0 (√f kθv⊥/ωc) is the Bessel function,  f = 1 + [s(θ - θk) - α sin θ]2, α = α c + α E,
V = (s- α cos θ) 2/f 2 – α cos θ/f is the potential due to the ballooning curvature effect, and Vρ is the finite
Larmor radius correction of energetic particles to V; with - ∞ < θ  < ∞ being the extended poloidal angle
coordinate along the magnetic field. Note that in Eq. (1), the left-hand side is the inertial term and the
right-hand side consists of the field-line bending (first term), the ballooning drive (second term), and the
energetic-particle kinetic compression (third term). The energetic component, described by the function
δG, is governed by the gyrokinetic equation [2, 3]. The energetic particle dynamics is determined by the
bounce and precessional motions, along with the free energy source in both configuration and velocity
spaces. The kinetic excitations of  α−TAEs are displayed in Fig. 1 for various poloidal wavenumbers,
denoted by kθ ρA0 with kθ = nq/r, and α = 2.0. The unstable mode structures corresponding to, for example
kθ ρA0  = 0.32 are essentially the same as that of the  α−TAE trapped in the potential well as shown in Fig.
2. The excitation mechanism is characterized by the bounce-precessional resonance condition ωr - ϖd - K
ωb = 0 with K being an integer [2], which maximizes the kinetic drive in Eq. (1). With the Maxwellian
distribution function for the trapped energetic particles, it is found that the K = 2 resonance dominates the
α−TAE excitation shown in Fig. 2. The quasi-marginal stability of α−TAE is further demonstrated by
essentially thresholdless excitations with respect to the energetic-particle drive. In addition to the lowest-
order α−TAE, with frequencies ωr/ ωA0 ≈ 0.4 trapped in the dominant potential well, a higher-order
α−TAE, trapped in the neighboring higher-order well, is destabilized with frequencies ωr /ωA0  ≈ 0.3 for
kθ ρA0 ~ 0.1 in Fig.1. Due to the lower potential barrier, the higher-order α−TAE experiences a relatively
stronger continuum damping via wave energy tunneling and thus requires a small but finite excitation
threshold in the energetic-particle drive. Meanwhile, the K = 1 bounce-precessional resonances are
observed for this lower-frequency α−TAE.
             In summary, Alfvén instabilities in the second ballooning stable regime are predicted to be
dominated by the kinetic excitations of the trapped discrete α−TAEs, which can experience either
negligible or finite but small continuum damping.

                         
Fig. 1: Real frequencies (solid line) and growth rates  Fig. 2: Potential V (solid line) and mode structures of the
 (dashed line) versus kθ  ρA0  for s = 0.5, α  =2.0, ε �

� �
�  αTAE (squares) and its kinetic excitation (dashed line)

q=2.0, βE0=.06, VE0 / VA0=0.7, LP0 /R=-0.1, η=1.0,  versus θ  for the case of kθ   ρA0= 0.32 in Fig. 1.
ηE = 1.0, θb ∈ [800,1200]

3. Low Frequency Response of Cascade Mode
 In shear reversed tokamak discharges containing magnetically trapped energetic particles it is

common to see multiple Alfvèn cascade modes [4,5] that rise in frequency to the TAE gap as the
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minimum value of the safety factor, q0, decreases in time. Theoretical [6,7] and numerical studies [8,9]
have shown that the mode is established in a plasma about the shear reversal point. The theory predicts
that at very low values of plasma beta the Alfvèn cascade modes are localized about q(r)=q0  and follow
an approximate dispersion relation ω=|k|||VA with k||=(n – m/q0)/R  until the TAE frequency,
ωTAE=VA/(2q0R), is reached.  The theory gives strong preference to modes with rising frequency,
corresponding to k|| < 0, which is consistent with most of the experimental data [4,5] where
predominantly rising frequency modes are observed [8,9]. Observations also reveal that the modes never
reach zero frequency. The spectral lines either disappear at low frequencies or they approach a common
minimum frequency for several modes as shown in Fig. 3, a less frequent experimental case where
downshifting frequency is observed.  At low frequency continuum damping [10] together with other
damping mechanisms can readily account for mode suppression but not for spectral line bending seen in
Fig. 3 at the lowest frequency. The latter requires a different underlying mechanism associated with finite
plasma beta and geodesic curvature.

The geodesic curvature from toroidal geometry precludes shear Alfvén perturbations from being
strictly incompressible, giving rise to pressure perturbation in a finite β plasma. Significant modification
of the Alfvén continuum due to plasma pressure was found numerically in Ref. [11]. This finding is
apparently relevant to what is seen in Fig. 3 because it appears that the cascade frequency tends to be
close to the continuum, except when the mode reaches the TAE gap. However, Ref. [11] does not
immediately give the precise physics reason for the relatively strong pressure effect on low-frequency
cascades.  This calls for analytical treatment of the problem [12], which enables parametric comparison of
the underlying mechanisms and identification of the dominant one.

Fig. 3: Spectral lines observed on JET show bending at low Fig. 4: Effect of plasma pressure on frequency, Ω=ω /ωTAE,
frequency around 43.8s for several n-modes. Plasma starts for n= 3 and m= (12, 11) as function of safety factor q0.
at 40 sec. Solid curves represent the MHD continuum and the

triangular and circular points are for beta values of 0.005
and 0.0015 respectively.

In addition to the geodesic effect, there are two more pressure effects on shear Alfvén waves, which are
convection in presence of an equilibrium pressure gradient and the toroidicity induced coupling between
shear Alfvén waves and acoustic modes. Such coupling occurs at ω  = CS /Rq0 , where locally the shear
Alfvén frequency matches the acoustic frequency for a neighboring poloidal mode number.
          The geodesic effect can be clearly separated from both the convection and the acoustic coupling. In
contrast to the convective mechanism, the geodesic effect involves plasma compression, and the resulting
characteristic frequency scales as β 1/2 rather than β  with plasma pressure, which makes the convective
mechanism insignificant at sufficiently low pressure. Ironically, plasma compressibility can be difficult to
treat in MHD codes, which recently led to an artificial exclusion of the geodesic effect from the
simulations of cascade modes in low-beta plasma in favor of less relevant but more easily incorporated
convective effect [13]. The key distinction between the geodesic compressibility and acoustic coupling is
that geodesic compression occurs without plasma displacement along the magnetic field lines, and the
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corresponding characteristic frequency is 
�
2 q0  times greater than ω  =  CS /Rq0. As a result, the mode

phase velocity is greater than the ion thermal velocity even in isothermal plasma, which allows the mode
to avoid strong ion Landau damping.

In deriving the mode equation for frequencies below the TAE gap we use the large aspect ratio,
low β, and low shear simplifications. After suitable algebra, the MHD equations in the large- m limit
reduce to a form that is diagonal in the poloidal harmonic m. Using a normalized radial coordinate
x≡m(r-r0)/r0 relative to the radial point, r0 , of zero shear the governing equation for the eigenmode in the
region –1/2 < m – nq0 <1/2  is found to be,
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At x=0, the Alfvén continuum frequency, ωcont, corresponds to S=0, so that the minimum
continuum frequency is ωmin = � 2 CS /R. All low-frequency eigenvalues of the mode equation are close to
ωcont.  If 0 < (m-nq0) < 1/2, the cascade eigenmode is localized around x=0, and its eigenfrequency is
somewhat greater than ωcont  as seen in Fig. 4 (this figure shows eigenfrequencies for a more general set
of equations that remains valid even when the frequency enters the TAE band). It is worth mentioning
that Eq. (2) does not have suitable solutions in the region  –1/2 < m – nq0 <0 where the mode would
exhibit a down sweep. Similar to the upward sweeping spectral lines, the atypical down sweeping lines in
Fig. 3 follow the time evolution of ωcont but their precise interpretation still remains to be developed.

In applying the theory to the JET experiments we note that q0 typically varies from 4 to 2 in the
shear reversed discharges, so that δ   is indeed small in such experiments. In Fig. 4 we see that the
minimum frequencies are an appreciable fraction of the TAE frequency for quite low beta. The lower
limit of the continuum frequency, which is independent of n or m number, appears to be the main
governing factor for determining the minimum frequency in Fig. 3. 
4.  Effect of Neutral Beam on TAE’s in ITER

The injection of 1 MeV neutral beams is being planned for ITER as a source of heating, current
drive, profile control and for establishing transport barriers [14]. These neutral beams are super-Alfvénic
so that they are destabilizing to TAE modes [15]. Though typically the beam pressure is 0.2-0.5 of the
alpha particle pressure, the linear universal instability drive of the beam is comparable to the alpha
particle drive because the phase space density at the particle- wave resonance for a given beta is larger for
a beam distribution than for an isotropic distribution. In addition the pitch angle anisotropy of the
distribution allows for an inverted energy distribution (i.e. � f/ � E > 0) to be established. The appropriate
distribution function, caused by classical slowing down and pitch angle scattering processes, is generated
by the Monte Carlo code in TRANSP. However the intrinsic noise of the code makes it difficult to
replicate a smooth distribution function that can be used in the stability codes, such as the NOVA-K code.
Consequently simplifying theoretical models were developed based on beam injection peaked about some
pitch angle when there is relaxation due to electron and ion drag and pitch angle scattering. Satisfactory
replication of the distribution predict by TRANSP was obtained as shown in Fig. 5.

Typically global TAE modes are more difficult to self-excite than core localized TAE modes as
the global mode is damped by continuum resonances that arise within the inner profile of the plasma.
However, with neutral beam off-axis injection, we have found that the q-profile, due to the current
induced by the neutral beams, can be fairly flat at r/a ~ 0.4, where the energetic particle drive is largest.
The relatively small value of shear (s < 0.3) that exists there prevents an appreciable component of the
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TAE mode structure from propagating to smaller radii [16], where continuum damping would arise, but
allows a global mode structure to arise outside this radius as is seen in the mode shown in Fig. 6. The
results of the stability analysis for a nominal ITER case is shown in Fig. 7. We see that by neglecting the
beam drive the system would be barely stable for the plasma temperature ~20KeV, but with the inclusion
we find that the system is significantly above marginal stability. A detailed break-down of the principal
partial growth rates,  γj/ω(%), for the n=10 TAE mode give:  −0.18  from electron collisions, -0.61 from
ion Landau damping, -0.43 from radiation of KAW’s, 0.82 from alpha particles, 0.71 from neutral beams.
Summing the entire result give γtotal/ω=0.31.        

Fig. 5: Ion pitch angle distribution, fχ ,as function of the             Fig. 6: Global TAE eigenmode. Note eigenmode is not
pitch angleχ.The different pitch angle region correspond to:           excited in the central region.
 (i) co-passing beam ions; (iii) trapped ions: (iii) counter-
passing ions. Curve  (a) is the distribution predicted from
 the analytic model, while curve (b) is the distribution function
 that is generated by the TRANSP Monte-Carlo algorithm.

                             

Fig. 7: Toroidal mode number dependence of the Fig. 8: Fraction of alpha particle loss as a function of the
TAE growth rates for the cases with the drive from  alpha particle beta value as the core ion temperature
 alpha particles alone (squares) and from both varies from 20kev to 24.4 kev with the plasma density
 the NBI ions and alpha particles (diamonds).  constant (solid curve) or the plasma beta constant

(dotted curve).

A heuristic quasilinear model was developed to attempt to assess the nonlinear consequences of
the TAE instability [17]. The model builds upon the 1-dimensional model analyzed in Ref. [18] while
incorporating the point that only about a quarter of the energetic particle distribution function has
undergone relaxation from the resonant particle interaction [19]. The details of this model can be found in
the appendix of Ref. [17]. Typically the instability drive is peaked off-axis and the system is locally stable
near the axis (due to ion Landau damping) and near the edge due to large electron collisional damping.
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Under the assumptions that the stability conditions are spatially local and that the quasilinear theory
produces overlap of the particle-wave resonances, it follows from that linearly unstable region will spread
out radially. However, for a system not too much above the instability threshold the broadened instability
band can still remain inside the plasma. The theory allows us to estimate the relaxed distribution function
when the outer boundary of the unstable region is less the edge radius a.  However, if the outer boundary
of the edge region reaches the edge, alpha particles are directly lost and we can determine the fraction of
alpha particle loss as a function of βα which increases with ion temperature as shown in fig. 8.
5. Spectral Determination of Internal Fields due to Frequency Sweeping

Rapid up and down frequency sweeping has been observed in several tokamak experiments e.g.
[20,21] where TAE modes have been excited by energetic particles. A particularly clear example of this
effect has been seen in the MAST data shown in Fig. 9. A plausible mechanism to explain such sweeping
phenomena is the formation of phase space structures in the form of holes and clumps. A general theory,
together with numerical simulation studies, has been developed to describe the evolution of phase space
structures [22] for waves near marginal stability where the wave exists in the absence of energetic
particles and the marginal point is determined by the balance of the perturbing energetic particle drive and
background dissipation. When the collisionality is sufficiently small, a near threshold theory [23] shows
that the nonlinear evolution is explosive, which implies that the ultimate saturation level is independent of
the closeness to marginal stability. Instead the amplitude of the saturated induced field is dependent on
the strength of the energetic particle drive and insensitive to the damping mechanisms.  The saturated
field amplitude (expressed in terms of the nonlinear trapping frequency of a typical resonant particle

2/1
rb Bδω ∝  (where rBδ is the perturbed radial magnetic field) is found to be   ωb

= C
2
γ

L
, while the up-

down frequency sweeping shifts are found to depend on the internal field,  δω = C
1
ω

b
3/2δt1/2 . For a given

physical system the dimensionless parameters   C1
 and C

2
can be extracted by examining the response of

simulation codes, such as the HAGIS code [24]. An example of the frequency sweeping observed in this
simulation is shown in figure 10 where we see up-down frequency sweeping with the frequency shift
fitted to the theoretical evolution. Using the MAST geometry, the MISHKA code was employed to find
the appropriate TAE eigenfunction for use in the HAGIS simulations which predicts the evolution of the
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Fig. 9.  Frequency sweeping observed in MAST experiment, shot #5568

amplitude and phase. The HAGIS code also enabled the direct extraction of the relationship between the

nonlinear particle trapping frequency and the perturbed magnetic field amplitude  δ B
r
. Through this

approach [25] it was inferred that the observed MAST frequency sweeping mode has a peak internal field

amplitude of   δ B
r

≈ 2 × 10−4T , while the experimental Mirnov coil measurements, together with the

MISHKA code TAE eigenfunction inferred a peak field amplitude of   δ B
r

≈ 5× 10−4T . This result

indicates that the frequency sweeping data gives a reasonable estimate of the internal field. However, the
methodology of comparison is still needs refinement and is under development.
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Fig. 10:  Frequency simulation of the MAST from the HAGIS
code showing up-down frequency splitting from phase space
 structure formation.

Fig. 11: Relative continuum damping rate, γ /ω,
versus q(0).

6. Damping Due to Kinetic Alfvén Wave
A key issue for predicting Alfvèn instability is the correct determination of background damping

mechanisms and it is recognized that conversion to radiating KAW’s plays a crucial role. A recent
experimental test of a TAE damping model showed that a physical understanding of the damping
mechanism is still lacking [26]. In particular, the measured damping rates of an n = 1 TAE mode in JET
are much larger than the radiative damping rate of KAW’s as calculated locally by the NOVA-K code
[27]. On the other hand, global gyrokinetic calculations of the PENN [28] and CASTOR [9] codes yielded

damping rates comparable to experimental values for low damping rates, ≤ωγ / 2%. In the PENN code

the principal damping mechanism is due to mode conversion to a KAW near the center of plasma [28]
while the results of CASTOR code showed that the damping comes mainly from edge region [9] due to
mode conversion to a KAW there. In this work, we develop a model for a large aspect ratio tokamak and
show that, when the density at the edge vanishes, that continuum resonance arises near the edge to
produce mode damping rates comparable to the measurement and that no mode conversion to KAW is
found near the center of plasma.

We start from coupled reduced kinetic equations for TAEs  in a large aspect ratio and low beta
tokamak and find:
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i
,ρ

s
 are respectively, the mass density, ion Larmor radius, and

ρs =(Te/Ti)
1/2ρi and η  the plasma resistivity (time c2 in cgs units). Here the operator  Lm

 corresponds to

the ideal MHD equation for shear Alfvèn waves in a cylinder with m being the poloidal mode number,

and operator   Lm±1
 arises from toroidicity. Finally the fourth-order term  gKm

comes from finite ion

gyroradius effects, and the parallel electric field due to kinetic electron response and resistivity η.
Equation (1) is solved as an eigenvalue problem using a cubic finite element method. We

consider parameters and profiles of a JET discharge (#38573) at t = 5 sec: B = 2.56 T,

  ne
(0) ~ n

i
(0) = 1.75 × 1013cm-3 ,   Te

(0) = 2.6KeV,   Ti
(0) = 2.0KeV,    q(0) = 1.36,  and   q(a) = 4.6.  In Fig. 11 we
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exhibit the damping rate of the n = 1 TAE for two cases: the first with finite edge density

  ni
(a) / n

i
(0) = 0.07 and the second with zero edge density. In the first case, the n = 1 continuum spectrum

gap structure is completely open so discrete TAE modes can exist without wave resonance from the
Alfvèn continuum. In this case, we find that there is no evidence of any mode conversion to KAW near
the center of plasma. Only negligible mode conversion occurs near the q = 1.5 gap where the main MHD
TAE is located. The resultant radiative damping rate is very small γd /ω < 0.1%  (see lower curve in Fig.
11) due to small ρi and ρs, consistent with the local model of radiative damping. Furthermore, at the edge
no mode conversion to KAW is found for the boundary condition used (i.e., tangential electric field being
zero at the plasma edge with a conducting wall). For some other type of boundary conditions, we can
show both analytically and numerically that mode conversion can occur near the edge, which results in
damping rates comparable to the experimental values. Therefore it remains a possibility that additional
damping occurs from a more accurate modeling of the plasma-vacuum interface where additional mode
conversion and dissipation may occur.

We now consider damping in the second case where continuum resonance occurs near the edge
where ni(a)=0. The calculated damping is shown in upper curve in Fig. 11. We observe that in this case
the damping rate is much larger than the damping for the case of finite edge density. The dependence of
damping with q(0) is correlated to where the eigenmodes peak relative to the edge, with larger damping

for modes nearer the edge. The damping is comparable to the experimental values   (γ d
/ ω ≈ 1%) . This

result indicates that edge continuum damping is a plausible mechanism for the damping observed for the
n=1 TAE modes in JET.

In conclusion, we find that our modeling does not produce any mode conversion from TAE to
KAW’s near the center of plasma for the parameters and profiles of a  JET plasma. There is also
insignificant mode conversion near the edge plasma when there are no continuum resonances there.
However, accounting for a low density edge region typically allows continuum damping and may account
for the observed damping of n=1 modes in JET plasmas.
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