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Abstract. The change in non-linear EPM dynamics that accompanies the transition from weak to strong ener-
getic ion transport is discussed in the present work. It is demonstrated that the non-linear threshold in fast ion
energy density for the onset of strong convective transport occurring in avalanches is close to the linear EPM
excitation threshold. This phenomenology is strictly related with the resonant character of the modes, which tend
to be radially localized where the drive is strongest. After the convective loss phase, during which non-linear
EPM mode structure is displaced outwards, fast ion transport continues due to diffusive processes. Theoretical
analyses, presented here, are the basis for consistency analyses of operation scenarios in proposed burning plasma
experiments. Comparisons between theoretical predictions and both simulation and experimental results are also
briefly discussed.

1. Introduction and Background

A burning plasma is a self-organized system, where collective effects associated with fast ions
(MeV energies) and charged fusion products (from now on referred to as fast or energetic ions)
may alter their confinement properties and even jeopardize the achievement of ignition. Simu-
lation results indicate that, above threshold for the onset of resonant Energetic Particle Modes
(EPM) [1], strong fast ion transport occurs in avalanches [2] (see Fig. 1). Such strong transport
events occur on time scales of a few inverse linear growth rates (generally, 100 ÷ 200 Alfvén
times) and have a ballistic character [3] that basically differentiates them from the diffusive
and local nature of weak transport. Meanwhile, numerical simulations have demonstrated that
Alfvén Cascades in JET [4] are consistent with both weak as well as strong fast ion trans-
port [5]. Recently, experimental observations on the JT-60U tokamak have also confirmed
macroscopic and rapid (in the sense discussed above) energetic particle radial redistributions in
connection with the so called Abrupt Large amplitude Events (ALE) [6]. Therefore, it is cru-
cial to theoretically assess the potential impact of fusion product avalanches on burning plasma
operation in the perspective of direct comparisons with experimental evidence.

The change in non-linear EPM dynamics that accompanies the transition from weak to strong
energetic ion transport is discussed in the present work. It is demonstrated that the non-linear
threshold in fast ion energy density for the onset of avalanches is close to the linear EPM
excitation threshold. This phenomenology is strictly related with the resonant character of the
modes, which tend to be radially localized where the drive is strongest [7, 8]. When the non-
linear threshold is exceeded, the EPM envelope propagates radially because of two reasons: the
radial dispersiveness of the mode and the rapid redistribution of the energetic particle source.
These two effects can be viewed as manifestation of linear and, respectively, non-linear EPM
radial group velocities. As it propagates, the EPM radial envelope is convectively amplified
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FIG. 1. Time evolution of the EPM radial structure, decomposed in poloidal Fourier harmonics. Here
τA0 = R0/vA0, with R0 the tokamak major radius and vA0 the on axis Alfvén speed. The toroidal mode
number is n = 4. δαH is the nonlinear modification of the fast ion αH = −R0q

2(dβH/dr) [2].

due to resonant wave-particle interactions, which are responsible for the secular motion of the
unstable front as well and, ultimately, of the avalanching process [9]. After the convective loss
phase, during which non-linear EPM mode structure is displaced outwards, fast ion transport
continues due to diffusive processes [10, 11].

Our analysis refers to the nonlinear dynamic evolution of a single-n, i.e. a single toroidal mode
number, coherent shear Alfvén (s.A.) wave, strongly driven in the presence of an isotropic
fusion alpha particle population. For the sake of simplicity, we consider a low-β and large
aspect ratio tokamak plasma with circular magnetic surfaces. Thus, the ratio of thermal to
magnetic energy densities, β = 8πP/B2

0 � 1, B = B0R0/R and the torus minor/major radii
are such that a/R0 � 1. Meanwhile, we can consider a simple (s, α) model equilibrium, with s
the magnetic shear and α = −R0q

2(dβ/dr), and assume a straight magnetic field line toroidal
coordinate system (r, θ, φ), with q(r) = (B · ∇φ/B · ∇θ) the safety factor.

The nonlinear dynamics of a single-n coherent s.A. wave is affected via both local and global
phenomena. In the first category, the idea of mode saturation via wave-particle trapping [12,
13] has been successfully applied to explain pitchfork splitting of Toroidal Alfvén Eigenmode
spectral lines [14]. However, other physical mechanisms can be important, depending on the
parameter regimes, as Compton scattering off the thermal ions [15] and mode-mode couplings
generating a nonlinear frequency shift which may enhance the interaction with the Alfvén
continuous spectrum [16, 17]. All these phenomena are local in the sense they either locally
distort the fast ion distribution function because of quasi-linear wave-particle interactions [12,
13], or locally enhance the mode damping either via nonlinear wave-particle [15] or wave-wave
interactions [16, 17]. For such a reason, the radial mode structure providing the envelope of
the poloidal Fourier harmonics that compose the wave field – see Eq. (5) below – never enters
in all these treatments.
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Intuitively speaking, the relevance of local phenomena in the nonlinear dynamics of a single-n
coherent s.A. wave near marginal stability [18] is readily understood. However, for a resonant
mode like the EPM, which is localized where the drive is strongest [7, 8], global readjustments
in the energetic particle drive is expected to be important as well. In the following, we will
determine under what conditions global phenomena are relevant for EPM nonlinear dynamics
and show that these become important right above the linear excitation threshold for the mode.
Accounting for local and global phenomena on the same footing is extremely complex and,
in this respect, numerical simulations appear to be the optimal tool for such analyses [10, 11].
Hereafter, we neglect local phenomena and consider only global nonlinear EPM dynamics. Our
findings will be checked for consistency a posteriori.

In the presence of global equilibrium profile changes, the nonlinear dynamics of a single-n
coherent EPM can be affected by both E × B shearing due to spontaneously generated zonal
flows as well as by nonlinear distortions of the energetic ion source. Of these two processes,
the latter is dominant for (αH/βi)(Ti/TH) � ε3/2 [19], where αH = −R0q

2(dβH/dr), TH

is the fast ion thermal energy, ε = r/R0, r is the radial position where the EPM is localized,
and βi and Ti are the thermal ion β and temperature. This condition is typically satisfied for a
resonantly excited EPM. Thus, in the following, we concentrate on the fast ion source nonlinear
distortions. More specifically, we analyze these phenomena in the early nonlinear phase, when
avalanching occurs [2, 20]. In the late nonlinear phase, besides the fast ion diffusion in the
saturated field, radial fragmentation of the coherent EPM eddies can be spontaneously driven by
modulational instability of the mode radial envelope due to radial modulations in the energetic
particle source. This aspect is analyzed in Ref. [19].

2. Theoretical Analyses

The theoretical framework of our analysis is that of Refs. [9, 19]; i.e. we decompose the
fluctuating particle distribution function into adiabatic and non-adiabatic responses as [21]

δFk =
e

m
δφk

∂

∂v2/2
F0 +

∑

k⊥

exp (−ik⊥ · v × b/ωc) δHk , (1)

where notation is standard and the subscripts H for the energetic ions have been dropped unless
needed to avoid confusion. The non-adiabatic response of the particle distribution function,
δHk, is obtained from the NL gyrokinetic equation [21]:

(

∂t + v‖∂` + iωd

)

k
δHk = i

e

m
QF0J0(γ)δLk −

c

B
b · (k′′

⊥ × k
′
⊥) J0(γ

′)δLk′δHk′′ ,

QF0 = ωk
∂F0

∂v2/2
+ k · b̂ ×∇

ωc
F0 , δLk = δφk −

v‖
c

δA‖k , (2)

where δφk and δA‖k are the scalar and parallel vector potentials. The present approach is
based on treating hot particle distribution consisting of a background one plus a perturbation
on a meso time and space scales: thus the background distribution is frozen in time. To solve
Eq. (2) for the nonlinear modification of the equilibrium fast particle distribution function in
the presence of a coherent EPM, we adopt the procedure of Ref. [22]. Thus, indicating with
δHz the (m = 0, n = 0) (zonal) energetic ion response, we have

δHz = exp (−iQz)Hz , B · ∇Hz = 0 , Qz =
q

(r/R0)
kz

v‖
ωc

, (3)
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where kz = (−i∂r) is the radial wave vector of nonlinear equilibrium profile changes. This is
then reduced to a “quasilinear” evolution equation for the meso-scale Hz

∂

∂t
Hz =

∑

kz=k′+k′′

i
c

B0

k′
θ

∂

∂r

[

eiQzJ0(γ′)δLk′δHk′′

]

, (4)

with k′
φ = −k′′

φ, k′
θ = −k′′

θ and (...) =
∫

(d`/v‖) (...) /
∫

(d`/v‖), ` being the arc length along
B [22]. In order to make further analytic progress and discuss the EPM nonlinear dynamic
evolution, we consider a simple case in which the dominant wave-particle interactions are
described via the precession resonance (see, e.g. Ref. [11]) and assume that trapped particles
move with an harmonic motion about the torus midplane, i.e. they behave as deeply trapped
particles. Introduce, now, the following ballooning representation of the EPM mode structure

eH

TH
δφk = einφ

∑

m

e−imθ
(
∫ ∞

−∞
e−i(nq−m)ηΦ0(η, θk)dη

)

A(r, t)√
2π

, (5)

where η is the extended poloidal angle, θk = (−i/nq′)∂r acting on the EPM envelope A(r, t)
and Φ0(η, θk) is the ballooning EPM eigenfunction with the same normalizations chosen in
Ref. [7]; i.e., its large |η| behavior can be written as

Φ0(η, θk) =

[

a(±) cos(η/2) + b(±) sin(η/2)
]

{

1 + [s(η − θk) − α sin η]2
}1/2

exp
[

−ε0(ω
2/ω2

A)a(±)b(±)η
]

. (6)

Here, a(±) =
√

1 − ε−1
0 [1 − ω2

A/(4ω2)], b(±) = ±
√

1 + ε−1
0 [1 − ω2

A/(4ω2)], (±) stands for
(positive/negative) η, ε0 = 2(ε + ∆′), ∆′ is the radial derivative of the Shafranov shift and
ωA = vA/(qR0) is the local value of the Alfvén frequency. Then, the linear energetic particle
response in the ballooning representation is

δHk ' −
(

e

m

)

J0(γ)
QF0

ω

[

Φ0(η, θk) − e−iQkJ0(Qk0)
ω̄d

ω̄d − ω
Φ0c(η, θk)

]

, (7)

where Qk stands for Qz with kz substituted by kr and with θ dependencies mapped into η,
Qk0 is Qk computed at θ = 0 and Φ0c(η, θk) is Φ0(η, θk) with only ∝ cos(η/2) dependencies
included. Note that, here, we have assumed that finite banana width effects are dominated by
geodesic curvature for finite magnetic shear [7]. Substituting back this expression into Eq. (4),
we are still left with residual fast radial dependencies on the k−1

r scale. In the present case,
we are interested in nonlinear energetic particle distortions to the equilibrium fast ion pressure
gradient on the k−1

z scale, ordered as the EPM radial envelope width. We can, thus, further
average Eq. (4) on the fast radial scale and we finally obtain

∂

∂t
hz = 2k2

θρ
2
H

ωcH

kθ

TH

mH

∂

∂r

[

IIm
(

QF0

ω

ω̄d

ω̄d − ω

)

Γ2 |A|2
]

H

. (8)

Here, hz is the spatially averaged expression of Hz, ρH is the energetic ion Larmor radius
and TH is the fast ion thermal energy. Furthermore, with γ = kθ(1 + s2η2)1/2(2µB0)

1/2/ωc,
Qk0 = kθθbsηq(v2/2ε)1/2/ωc and θb the bounce angle,

Γ2 =
∫ ∞

−∞
J2

0 (γ)J2
0 (Qk0) |Φ0c(η, θk)|2 dη (9)
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describes finite Larmor radius as well as banana width effects. Here, finite orbit width effects
due to kz are neglected since |kz| � |kr|.

The EPM dispersion relation, can be always expressed in the form [7]

[DR(ω, θk; s, α) + iDI(ω, θk; s, α)]A0 = δWKT A0 , (10)

where we have extracted the rapid EPM oscillation frequency from the mode amplitude as
A(r, t) = A0(r, t) exp(−iω0t), with A0(r, t) accounting for slow time variations only, i.e.
|ω−1∂t ln A0| � 1. In Eq. (10), ω = ω0 + i∂t and θk = (−i/nq′)∂r are operators acting
on A0(r, t), and both real, DR, and imaginary part, DI , of the dispersion function can be for-
mally treated as the principal symbol of a pseudo-differential operator [7, 23]. Furthermore,
δWKT is related to the fast ion contribution to the potential energy and can be written as [7]

δWK,T =
2π2e2

mc2
qR0B0

∑

v‖/|v‖=±

∫

d

(

v2

2

)

∫

dµ
ω̄2

d

k2
θ

τB
QF0

ω̄d − ω
, (11)

where τB = 2π/ωB = 2πqR0(2/v
2ε)1/2 is the bounce period of deeply trapped ions. Note that

Eq. (11) does not depend on the mode number, consistently with s ≈ 1 and with the wavelength
ordering kθρH

<∼ ε <∼ kθρBH
<∼ ε1/2 < 1, assumed here, and corresponding to the most unstable

conditions (ρBH is the fast ion banana width). Nonlinearly

QF0 → QF0 +
kθ

ωc

∂

∂r
hz , (12)

and the EPM dispersion relation, Eq. (10), is readily generalized. To explicitly compute
Eq. (11), we choose an isotropic slowing down distribution function, which has a cut-off at
the fusion energy Efus and is normalized to the fast alpha particle pressure PH considering
Efus � Ec, with Ec the critical energy [24]: F0 = (3PH)/(4πEfus)(v

3 +(2Ec/mH)3/2)−1. In
this way, defining ω̄dF as ω̄d computed at Efus, we obtain

δWK,T =
3πε1/2

4
√

2
αH

[

1 +
ω

ω̄dF
ln
(

ω̄dF

ω
− 1

)

+ iπ
ω

ω̄dF

+iπ
ω

ω̄dF
k2

θρ
2
H

TH

mH

1

αHA0
∂−1

t A0∂
2
r∂

−1
t

(

αH |A0|2
)

]

. (13)

Here, ∂−1
t is the standard notation for the inverse of ∂t and we have kept the nonlinear mod-

ification to the imaginary part of δWK,T only, consistently with the ordering |ω−1∂t| � 1.
Furthermore, we have assumed that the nonlinear time scale is sufficiently long to avoid de-
stroying resonant wave-particle interactions. Substituting back into Eq. (10), we finally obtain

[DR(ω, θk; s, α) + iDI(ω, θk; s, α)] ∂tA0 =
3πε1/2

4
√

2
αH

[

1 +
ω

ω̄dF
ln
(

ω̄dF

ω
− 1

)

+iπ
ω

ω̄dF

]

∂tA0 + iπ
ω

ω̄dF
A0

3πε1/2

4
√

2
k2

θρ
2
H

TH

mH
∂2

r∂
−1
t

(

αH |A0|2
)

. (14)

Equation (14) can be taken as the starting point for detailed analyses of avalanche dynamics
induced by EPM, which will be reported elsewhere. In the next Section, we present a discussion
of Eq. (14) in the local limit and compare our findings with results from numerical simulations.
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3. Discussions and Conclusions
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FIG. 2. Linearly unstable (top) and saturated (bottom) phases for
on axis βH0 = 0.025 and the other profiles as discussed in Ref. [2, 20].

Consider again the case
of Fig. 1, referring to a
JET-like q-profile in re-
versed shear experiments
with Alfvén Cascade
excitation [4] and a
model Maxwellian fast
ion distribution func-
tion [2, 20]. Figure 2
shows the EPM intensity
contour plots (left frames)
and the corresponding
fast ion surface density
(right frames) for the
linearly unstable and
saturated phases of the
EPM avalanche. The s.A.
continuum is emphasized
in black in the background
of contour plots, with
the visible effect of the
minimum-q surface at
r/a ' 0.53. Despite the
difference in the fast ion
sources – isotropic Max-

wellian vs. the isotropic slowing down assumed here – we use Figs. 1 and 2 as a typical
paradigm for EPM avalanches due to trapped energetic ions; i.e. the case for which, under
simplifying assumptions, Eq. (14) was derived. Specifically, it can be shown that the n = 4
mode in Fig. 1 is driven mainly by the precession resonance (ω ' ω̄d ∝ nq) at the radial
position where the drive is strongest [11].

In order to investigate the nonlinear dynamics of EPM avalanches, it is instructive to solve
Eq. (14) in the local limit. In fact, the narrow structure of the EPM envelope suggests to
assume |θk| � 1. Meanwhile, we can also consider that – near the peak of fast particle drive at
r0 – radial dependencies of the dispersion function are mainly due to the fast ion source profile,
αH = αH0 exp(−x2/L2

p), with x = (r − r0) and Lp the characteristic αH scale length. Finally
q profile changes account for the dominant radial variation of the s.A. continuum and ω̄dF . In
the linear limit, the mode frequency is determined by balancing DR with IReδWKT :

DR(ω0, θk = 0, s, α) = IReδWKT |x=0,ω0
. (15)

Meanwhile, the mode growth rate, γL is given by the competition between energetic particle
drive ∝ IImδWKT |x=0,ω0

and continuum damping ∝ DI(ω0, θk = 0, s, α):

γL = (IImδWKT − DI) [∂ω0
(DR − IReδWKT )]−1

∣

∣

∣

x=0,ω0

. (16)
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The radial dispersiveness, ∝ θ2
k, balancing the energetic ion profile effects, ∝

(

exp(−x2/L2
p)−

1
)

' −x2/L2
p , finally gives a typical radial envelope width ∆ ≈ (Lp/kθ)

1/2 and a complex
frequency shift of O(k−1

θ L−1
p ) [8]. Nonlinearly, Eq. (14) shows that the EPM reduces the drive

where the envelope is maximal and, at the same time, strengthens it in the nearby region,
where ∂2

r ln |A|2 > 0. This behavior is clearly visible in the lower frames of Fig. 1. In order to
maximize the drive, one readily sees that the EPM changes its radial localization according to

(x0/Lp) = γ−1
L kθρH (TH/MH)1/2 (|A0|/W0) , (17)

x0 being the radial position of the maximum EPM amplitude, W0 indicating the typical EPM
radial width in the nonlinear regime and having used γ−1

L to estimate the characteristic time in
the early nonlinear phase. This displacement is clearly an avalanche, since the mode moves
radially following an unstable propagating front. Note that the secular motion scales linearly
with the mode amplitude, consistently with the numerical simulation in Fig. 1, and it is directed
outwards since continuum damping is a decreasing function of (r/a) up to the minimum-q
surface and then increasing again, as it is evident from Fig. 2. This fact clearly facilitates
the secular motion up to the minimum-q surface, since the decreasing continuum damping
partially compensates the weakening of the drive due to the local phenomena discussed in
Sec. 1. Furthermore, this analysis provides an explanation of the reason why the EPM exhibits
the natural tendency to merge into a Cascade mode at the minimum-q surface at the end of the
convective amplification. Meanwhile, the real mode frequency still satisfies Eq.(15) computed
at x0. Therefore, the nonlinear frequency shift during the avalanche phase is

∆ω = s ω̄dF |x0
(x0/r) (ω0/ ω̄dF |x=0) . (18)

A posteriori, we may estimate the strength of EPM drive required to trigger an avalanche by the
value, x̄0, of the convective displacement, given by Eq. (17), at the time the mode amplitude
reaches the critical saturation value via wave-particle trapping, i.e. ωb ≈ γL [12, 13, 18], with
the wave-particle trapping frequency ωb such that ω2

b ≈ k2
θρ

2
Hkθ(TH/mH)R−1

0 |A| [12]. We
readily obtain x̄0 ≈ R0γL/(kθρH)(TH/mH)−1/2(∆2/W0). We can reasonably assume that the
avalanching process is triggered when the EPM secular motion shifts its localization by one
mode rational surface by the time wave-particle trapping becomes important. Meanwhile, the
avalanching process is expected to become increasingly strong when the EPM secular displace-
ment reaches up to a typical global mode width. Thus, in the very early nonlinear phase, we
may expect that a weak avalanche is triggered when kθx̄0

>∼ 1, i.e.

1 � γL

kθρH(TH/mH)1/2R−1
0

>∼ (kθLp)
−1/2 , (19)

while strong avalanching is expected to occur for x̄0
>∼ W0, i.e.

1 � γL

kθρH(TH/mH)1/2R−1
0

>∼ W 2
0 /∆2 . (20)

Note that W 2
0 /∆2 � 1 in Eq. (20) due to the short scale of the nonlinear distortion, δαH ,

in the equilibrium αH profile, as it emerges from Fig. 1. Both Eqs. (19) and (20) show that
the onset for EPM induced avalanches is close to the linear excitation threshold. If neither of
these conditions is satisfied, EPM will saturate either via wave-particle trapping or other local
phenomena, discussed in Sec. 1.
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The relevance of strong energetic particle transport due to EPM convective amplification in
burning plasmas is discussed in Ref. [11]. Meanwhile, experimental observations of rapid and
macroscopic fast particle transports, like those associated with ALE on JT-60U [6], suggest
that it is possible to excite large amplitude Alfvénic modes with signatures similar to EPMs.
More recently, it has been shown that there exist Alfvénic fluctuations, characterized by rapidly
chirping frequency, which are observed in JET in connection with excitation of large amplitude
Alfvén Cascades [25, 26]. These fluctuations chirp downward in frequency and eventually
merge into the spectral lines of Cascade modes, similarly to the qualitative behavior discussed
above for EPM. It must be pointed out, though, that in the JET case precession-bounce res-
onances are more likely to play the dominant role. From our analysis, it is evident that an
essential role in the avalanche dynamics is played by wave particle resonant interactions as
well as by the s.A. continuous spectrum. Therefore, dedicated modeling is required for quanti-
tative comparisons between theory, simulation and experiments.
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