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Abstract. The paper presents a new approach for the modelling of the pedestal energy transport in the 
presence of Type I ELMs based on the linear ideal MHD code MISHKA coupled with the non-linear  energy 
transport code TELM in a realistic tokamak geometry. The main mechanism of increased transport through the 
External Transport Barrier (ETB) in this model of ELMs is the increased convective flux due to the MHD 
velocity perturbation and an additional conductive flux due the radial perturbation of the magnetic field leading 
to a flattening of the pressure profile in the unstable zone. The typical Type I ELM time-cycle including the 
destabilisation of the ballooning modes leading to the fast (200µs) collapse of the pedestal pressure followed by 
the edge pressure profile re-building on a diffusive time scale was reproduced numerically. The possible 
mechanism of Type I ELMs control using a stochastic plasma boundary created by external coils is modelled in 
the paper. In the stochastic layer the transverse transport is effectively increased by the magnetic field line 
diffusion. The modelling results for DIII-D experiment on Type I ELM suppression using the external 
perturbation from the I-coils demonstrated the possibility to decrease the edge pressure gradient just under the 
ideal ballooning limit, leading to the high confinement regime without Type I ELMs. 
 
1.Introduction 
The physics of Edge Localised Mode (ELM) remains one of the important and still unsolved 
problems for H-mode scenarios in ITER [1]. This motivates present research to combine high 
plasma confinement with maximum pedestal energy and acceptable heat loads on the ITER 
divertor target plates during ELMs [2-3]. Type I ELMs are believed to be a manifestation of 
MHD modes driven by both the steep edge pressure gradient characteristic for the H-mode 
(ballooning modes) and the edge current, which has a large bootstrap fraction in the region of 
gradients (peeling modes) [4-5]. ELMs cause the periodic crashes of the pedestal pressure on 
an MHD time scale (~250µs [6] ) followed by the pedestal pressure build-up on a longer 
diffusive time scale (few ms). The traditional ideal MHD description of ELMs physics 
permits to analyse a given stationary pressure and edge current profile on peeling-ballooning 
stability and the calculate linear growth rate of the modes [5,7-9], but the energy and particle 
transport due to the instability demands a non-linear description. The non-linear approach 
used here is based on the linear MHD code MISHKA [9] coupled with the non-linear heat 
transport code TELM described in the present paper. This approach permits the modelling of 
both pedestal pressure profile relaxations (ELMs) due to destabilisation of ballooning mode 
by the edge pressure gradient and the transport in the stochastic magnetic field. The main heat 
transport mechanism in both cases is the additional radial conductive transport appearing the 
presence of the radial magnetic field perturbation.  
 
2.Theoretical and numerical model 
A non-linear energy transport equation: 
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is solved in the pedestal region in realistic tokamak geometry in magnetic flux co-ordinate 
system { }φθ,,s with straight magnetic lines (ψ − is a normalised poloidal magnetic flux, 



  

ψ=s , φ is toroidal angle and )(q
d
d ψ=
θ
φ ) [9]. Parallel and perpendicular to the magnetic 

field convective and conductive heat fluxes are taken in the following form: 
PVPP//// ⋅δ+∇⋅χ−∇⋅χ−=Γ ⊥⊥
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, where δV is MHD velocity perturbation (equal zero in 

equilibrium), P=P0+δP is a sum of pressure perturbation δP and averaged total plasma 
pressure P0=Pi+Pe . Here ion and electron pressure are considered to be equal (Pi=Pe=neTe ) 
and electron density is taken as constant ne=const.  

The perpendicular transport coefficient ⊥χ  is chosen to match the stationary 
experimental pressure profile in H-mode. In the region of External Transport Barrier (ETB) 

⊥χ  is reduced to the neoclassical value. The introduction of the conductivity parallel to the 
magnetic field in the fluid equations implicitly assumes strong collisionality plasmas [10] 

meaning that electron mean free path  
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 is much shorter than the 

typical parallel gradient scale length λ te<<LT. In present modelling the typical length is 
n/RqLT π≅ , where n is characteristic toroidal wave number of the perturbation. Usually the 

ratio (collisionality, if n=1) ν*=LT/λ te varies strongly in the pedestal region and in particular 
on the top of the pedestal where ν*<<1 in a typical H-mode scenario. The use of Spitzer-
Härm [10] expression for thermal conductivity 2/5

]eV[e
2211Spitzer

// T10.2]sm[ =χ −−  for low 
collisionality plasmas could lead to unphysical large heat fluxes even at very small parallel 
gradients. In order to extend the fluid approach various prescriptions were proposed based on 
comparisons with kinetic analysis for particular problems [10,11]. In present paper we used 
the kinetic corrections based on the parallel heat flux limit approach from [10]: 
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, where Γe,limit=αenevtekTe and αe is an ad hoc numerical factor 

adjusting kinetic and fluid modelling results specific for each problem [10,11].  This approach 

gives the expression: 
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number n=10 (See Fig.15). The simplified model for the parallel losses in SOL is used:   
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where
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Rq2π
=τ  is a characteristic energy transport time during Type I  ELM from the 

pedestal to the divertor [12], Cs is the ion sound speed. The position of the separatrix 
sSOL=0.99 is a parameter in TELM modelling.  

The basis vectors perpendicular to the co-ordinate surfaces (s=const, θ=const, 
φ=const) can be represented as: φ∇=θ∇=∇=

rrrrrr 321 a;a;sa . The co-variant basis 

vectors used in TELM are : ;sJf3a;sJf2a;Jf1a θ∇×∇⋅⋅=∇×φ∇⋅⋅=φ∇×θ∇⋅⋅=
rrrrrrrrr

 

where s2f;/1J =φ∇×θ∇•ψ∇=
rrr

. The gradient parallel to the magnetic field direction can 
be written in the following form: 
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; notice that for equilibrium magnetic field: 

φ∇+ψ∇×φ∇=
rrrr

IB0  the component B0
(1) =0. The perpendicular component of gradient 

operator is presented as follows: 
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The transport code TELM is a 2D-code, using a finite volume discretisation in the 
radial (s) and poloidal directions (θ) and a Fourier transform over the toroidal angle (φ). The 
pressure, fluid velocity and magnetic perturbation are presented as: 
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The condition for incompressible fluid, 0V =•∇
r

, is satisfied exactly in TELM code. The 
coupling of the toroidal harmonics is taken into account up to the second order of the 
perturbations to the equilibrium values. In this approximation the expression for radial 
component of the energy flux can be written as follows:  
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convention in the code is n<0, m>0, since on the resonant surface qres=-m/n>0. The cubic 
non-linear terms in (2.7) are neglected except the coherent one. This term is very important in 
the averaged pressure profile relaxation (harmonic n=0) since it is coupled with radial 

gradient 
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small perturbations of the magnetic field B
r

δ can produce significant transport. 



  

3. Pedestal transport with ELMs 
In the case of the heat transport due to Type I ELMs the radial magnetic perturbation and the 
fluid velocity structure are taken from the MISHKA code modelling for ballooning modes. 

The ballooning mode is destabilised if the normalised pressure gradient 
s

P
C 0

0 ∂
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−=α exceeds 

the critical value. The radial magnetic perturbation of an n=-10 ballooning mode is presented 
in Fig.1. Plasma parameters and equilibrium were taken for DIII-D shot #115467 during the 
ELMy H-mode phase [13] and are presented in Fig. 2. 
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Fig. 1. Magnetic field component perpendicular 
to the magnetic surface corresponding to the 
moment of the maximum  development of a 
ballooning mode n=-10.  

Fig. 2. (a)-electron temperature profiles in 
experiment [13] and TELM modelling: Te profile 
“after” ELM corresponds to the moment of the 
maximum magnetic perturbation B1(n=-10) and 
separated from the profile “before” by 100µs. (b)-
electron density profile. 
. 

The time dependence of MHD perturbations is taken as ~eλt. The linear growth rate λ for 
MHD mode (here medium n ballooning) on the most unstable magnetic surface (usually 
corresponding to the maximum pressure gradient) is calculated with the MISHKA code for 
the initial averaged pressure profile P0 (t=0,s) and then linearly extrapolated for the averaged 
pressure P0(t,s) which evolves in time due to the transport generated by the unstable mode: 
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The constants C0, C1 and C2 are calculated by the MISHKA code for a given equilibrium and 
toroidal harmonic number n. The normalised pressure gradient α and the marginally stable 
pressure gradient αcrit is calculated for the most unstable surface (here s=0.97). This 
approximation is justified by MISHKA calculations where the λ2 dependences on α and 
toroidal number n are almost linear. The growth rate λ is positive for growing ideal modes 
when normalized pressure gradient critα>α and negative when pressure gradient is below the 
critical value and represents the damping level (∆ > 0). In the simulations we use values of ∆ 



  

to adjust experimental ELM time. The time evolution of the pedestal pressure (a), fluid 
velocity (b), magnetic perturbation (c) and radial flux through separatrix  (here s=0.99) during 
an ELM are presented ion Fig.3 and Fig.4. 
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Fig. 3. (a)- Pedestal pressure(at s=0.95), (b)- 
radial velocity )s,V(V 1 ∇=

r
at  s=0.97, θ=0; 

(c)-radial magnetic field at s=0.97, θ=0; (d)-
averaged radial heat flux Γ1

0 at s=0.99. 
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Fig. 4.  Zoom of Fig.3 for a second ELM. 

The results of the simulations demonstrated the compatibility of the model and the main 
experimentally observed characteristics of Type I ELMs: the ballooning structure, the fast 
collapse of the pressure profile on a MHD time scale (ELM time ~200µs) and the pressure 
profile re-building on a diffusive time scale (here ~8ms). The pedestal transport is increased 
significantly when MHD mode is destabilized due to the increased convective flux and an 
additional conductive flux due to the radial perturbation of the magnetic field (see 2.7) both 
leading to a flattening of the pressure profile in the unstable zone (Fig.2a). However the 
present model of Type I ELMs has obvious simplifications and ad hoc parameters (see Sec.2) 
limiting the realistic description of the energy loss in ELM. In particular the simplified model 
for the parallel losses in the SOL (2.2) does not include any description of the non-linear phase 
and possible reconnections of the perturbed magnetic field lines and open field lines in the 
SOL. 
4.Modelling of ELMs control by stochastic fields. The present version of the pedestal heat 
transport model includes the possibility to calculate the effect of the magnetic perturbation 
generated by external coils. It was demonstrated theoretically and experimentally that a small 
radial perturbation of the magnetic field can induce chaotic behaviour of the magnetic field 
lines. In this case the radial diffusive heat transport is amplified by the diffusion of the 
magnetic field lines in the ergodic zone [15-17].  

The experiment of Type I ELM suppression by I-coils on DIII-D [13] was taken as an 
example for modelling in the present paper. The set of six upper and lower I-coils is presented 
in Fig.5. A static magnetic perturbation was calculated using Biot-Savart law for the 
experimental set-up described in [13], which was the alternative current feeding of the current 
loops in poloidal direction and asymmetric with respect to the mid plane z=0. The mid-plane 
view of the cylindrical radial component of the magnetic field is shown Fig.6. The main 
toroidal harmonic number is n=3. The poloidal view of the harmonic n=3 is presented in Fig.7. 

The poloidal view of the perpendicular component, 
z
sB

R
sB)s,B(B zR

)1(

∂
∂+

∂
∂=∇=

r
, is 

presented in Fig.8 and Fig.9 for a realistic experimental value of the coil current Icoil=4kA. The 
units on Fig. 8-9 are arbitrary: all lengths are normalised to the major radius (RM=1.77m) and 



  

magnetic field is normalised to the value on axis (BM=1.6T). The poloidal spectrum of b(1)
n in 

magnetic flux coordinates is peaked at the poloidal mode number m=10 for the ψ=1 and m=8 
at the ψ=0.95 surfaces (Fig.10). 
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Fig. 5. I-coils geometry . Fig. 6. Radial cylindrical component of the magnetic 

field generated  by a set of I-coils in DIII-D at I=1kA. 

    
Fig.7. Harmonic n=3 of the radial cylindrical 
component of the magnetic field at I=1kA. 

Fig. 8. Real(Bn
(1)/B0). Ratio of the radial magnetic 

perturbation harmonic n=-3 to the equilibrium field in 
TELM a.u. for I=4kA.   
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Fig. 9. Im (Bn
(1)/B0) in TELM a.u. for I=4kA.   Fig.10. Poloidal spectrum of the magnetic perturbation 

(Icoil=1kA). 
  
 



  

 
. The radial profiles for the different poloidal harmonics are presented in Fig.11. The resonant 
surfaces are represented by vertical dashed lines. Since the I-coils were not initially designed 
for the ergodisation of the edge, the perturbation is not maximum at the edge for this magnetic 
configuration TELM modelling demonstrated a  island-like structure of the pressure 
perurbation situated near the top of the pedestal with a characteristic poloidal number m~9 
(Fig.12). 
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Fig. 11. Radial dependence of /B1
mn/ harmonics 

for the spectrum presented in Fig.10 (Icoil=1kA) 
 

Fig. 12. Islands structure on the pressure perturbation from 
TELM modelling of DIII-D shot #115467 with  I-coils 
current ~4kA. 
. 

 
The simulated profiles with and without ELMs are in the error bars of the experimental values 
(Fig.14). The effective increase in the perpendicular heat diffusivity due to the radial 
perturbation of the magnetic field can be estimated from the expression (2.7) for the averaged 

perpendicular flux 
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are presented in Fig.15.   
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Fig. 13. Normalised pressure gradient reaches 
critical value (α ELM) for ELM triggering  at 
Icoil=0 and remains just under with Icoil=4kA 
 

The electron pressure profiles and hence plasma 
confinement are almost the same during the 
ELMy phase and when the ELMs are suppressed 
by the I-coils [13]. The modelling results indicate 
that during the stationary phase without ELMs 
the confinement in the pedestal is just marginally 
degraded and the critical pressure gradient is not 
reached,  resulting in the suppression of ELMs in 
numerical simulations (Fig.13). This result is 
proposed as one of the possible explanations of 
the observed experimental facts. It still requires 
further experimental confirmation, since all 
numerical profiles with and without ELMs are in 
the error bars of the experimental values 
(Fig.14). 
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Fig.14.Experimental and numerical total 
averaged pressure profiles with (“ELMy”) and 
without ELMs (“erg”) for DIII-D shot #115467. 

Fig.15. Characteristic parallel and perpendicular 
diffusivities used in modelling:  
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5. Conclusions.  
The 2D code TELM has been developed for the modelling of the pedestal transport in the 
presence of small radial perturbations of the magnetic field and small displacements of the 
magnetic surfaces. Periodic relaxations of the pedestal pressure due to the destabilisation of 
ballooning modes reproduce the main experimental features of Type I ELMs: the ballooning 
character of the crash on the outboard of the tokamak, the fast MHD time scale for the 
temperature collapse and the diffusive time scale for recovery phase. The modelling of the 
influence of the external magnetic perturbation demonstrated the possibility of the control of 
Type I ELMs using a stochastic plasma boundary created by the external coils without 
significant loss of plasma confinement. 
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