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Abstract. Analysis of 2D interchange simulation in the Scrape-Off Layer indicates that intermittent outbursts of 
density dominate the transport process. It is possible to define density fronts, namely over-dense regions that 
follow ballistic trajectories in the SOL. The scaling law that relates the SOL width λ to the connection length L// 
is modified compared to the standard diffusive scaling. The simulations lead to λ ∝ L//

0.63. An analytical model 
based on the interplay between the average density and the over-dense fronts yields an exponent 5/8 (0.625). 
Such a departure from a diffusive scaling tends to yield a larger SOL width but, as a consequence, enhances the 
plasma-wall interaction in the main chamber and lowers the separatrix density at given particle source.  
 
1. Introduction 
 
Intermittent transport in the Scrape-Off Layer of magnetically confined fusion devices has 
been the matter of recent experimental and theoretical investigation [1-5]. There is a general 
trend to consider that cross-field transport of matter is governed by long range ballistic 
propagation. In particular, simulations of SOL density transport, where the external drive is a 
given particle source (flux driven) rather than a prescribed density gradient, are characterised 
by intermittent dynamics [1, 5]. In this case, the transport properties are described by 
Probability Distribution Functions of the particle flux and density with heavy tails [1, 3, 5]. 
These bear many similarities with experimental observations of SOL transport and 
fluctuations [3, 4]. The mechanism of ballistic propagation of density fronts in the SOL is a 
likely candidate to describe the flat SOL density profiles [6], and consequently large particle 
recycling on distant objects, that are reported in experiments. This renewed understanding of 
SOL transport is now considered in the extrapolation to ITER [7]. Of particular importance is 
the particle flux to the main chamber. With ballistic transport, it is expected that a larger 
particle flux will reach the wall, leading to enhanced recycling there. This would have several 
consequences, such a reduced divertor efficiency, since a fraction of particle recirculation 
would bypass the divertor, or enhanced tritium trapping on the large wall extent. Depending 
on the energy transferred by this ballistic transport, especially the ion energy, the power to the 
main chamber wall can exceed the limit of the present ITER design. It appears therefore of 
particular interest to investigate the scaling law of the intermittent cross-field transport with 
device size, typically the plasma major radius R.  
 
In the present theoretical analysis of particle turbulent transport we characterise the particle 
outflux by the density e-folding length λ. For a diffusive transport as implemented in the 2D 
boundary plasma simulations for ITER, the standard scaling with device size is expected, 
λ = (D⊥L// / cs)1/2. D⊥ is the particle diffusion coefficient, cs the sound velocity stemming from 
the parallel loss at the sheath and L// = πqR is the parallel connection length proportional to 
the device major radius R, λ ∝ R1/2. For ballistic transport the expected scaling is 
λ = L// (V⊥ / cs) where V⊥ is the effective velocity of the transverse transport process. If the 
effective Mach number M⊥ = V⊥ / cs does not depend on R, the SOL width scaling is then 
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λ ∝ R1. Provided such a direct comparison of SOL width scaling is appropriate, one would 
expect an enhanced plasma-wall interaction in the main chamber compared to extrapolations 
based on present experiments and assuming a diffusive scaling. Given the importance of this 
issue, we address here the scaling law of the SOL width in terms of the connection length 
L// ∝ qR. Results are based on extensive simulations of 2D interchange turbulence in the SOL. 
The scaling law given by these simulations is backed by analytical models. Section 2 of this 
paper is dedicated to the turbulence model and to the definition of the fronts, Section 3 to the 
analytical investigation of the scaling laws  of the SOL width, finally, in Section 4 the 
numerical results are reported. 
 
2. SOL Dynamics with Interchange Turbulence 
 
We use here a simplified model at constant electron temperature Te in the cold ion limit of the 
interchange instability in the SOL, [8, 9]. In the flute approximation, one can reduce the 
dimension of the system to 2D, replacing the curvature operator by an effective mean 
curvature term g, and only taking into account the parallel transport via the sheath boundary 
loss terms at the end of the field lines, [8, 9]. The equations to be solved are then a particle 
balance equation, here for the electrons density normalised to a given arbitrary density n0, 
N = n / n0, and a charge conservation equation that yields an equation for the vorticity ∆⊥φ 
where φ is the electrostatic potential normalised by Te / e. The two equations are then : 
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The diffusion coefficients D and ν are collisional particle diffusion and viscosity. The electric 
drift convection takes the standard form of Poisson brackets [f,g] = ∂xf∂yg - ∂yf∂xg, where 
x = (r-a) / ρs is the minor radius normalised by the hybrid Larmor radius ρs

2 = Te / mi and 
where y = aθ / ρs, a is the plasma radius. The sheath loss terms depend on both the difference 
between the electric potential and the plasma floating potential Λ and on the sheath 
conductivity σ  = ρs / L//. At equilibrium, the particle source term S is then balanced by the end 
loss term (in the parallel direction). Typical values of the parameters used in the runs will be 
found in [5]. The numerical scan of device size is achieved with a scan on the control 
parameter σ. All simulation data, but the σ-scan, reported in this paper are obtained with the 
largest value of σ, that corresponds to a reduced connection length of order ~ 1 m. Very large 
simulation boxes are used, up to 2048 ρs radially, that allow for two decades of density 
decrease in the radial direction.  
 
The Probability Density Function of the radial particle flux at a given position allows one to 
describe the transport in terms of 3 fields. First, the average density field n (averaged over 
time and poloidal angle) that is characterised by the radial exponential decay λ. Second, a 
large number of small amplitude particle flux events are observed, both positive and negative. 
They balance out when computing the average transport. This random field will allow one to 
introduce a noise as third field in simplified descriptions. Finally, an exponential heavy tale of 
relatively rare events with large magnitude that accounts for most of the radial flux. These 
events are referred to as density fronts since they are related to over-dense regions of the 
plasma that move radially. In practise, the fronts are defined as the sets of points such that the 
density locally exceeds the average density by a given factor, here a factor 2. These points 
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cluster in structures that represent about 10 % of the box size. These over-density are defined 
by [ ] ( )),(2),,(),(),,(),,(~ txntyxnHtxntyxntyxn −−= , where the function H is the 
Heaviside function. At each time about 10 fronts can be identified and are characterised by a 
well defined boundary. This front selection criterion is depicted on Fig.(1), with a 2D plot of 

),(/),,( txntyxn . A blow-up of a particular front is shown on the right hand side.  
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FIG. 1. Left 2D plot of the density divided by the average density profile, nn /   

in a 256 ρs × 256 ρs simulation box, right hand side, blow-up of a front defined by 2/ >nn . 
 
The simulations allow one to follow these structures in space and time so that they can be 
numbered and there statistical properties analysed. For example, one can compute their PDF 
of radial velocity and poloidal velocity (in terms of Mach numbers Mx and My since velocities 
are normalised to cs), Fig.(2). In this analysis all values in x, y and t are used, on average for a 
given front <My>t ~ 0. 
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FIG. 2. Probability Distribution Function of the radial Mach number, 
 Mx, and poloidal Mach number, My, of the fronts. 

 
It is possible to use Eq. (1), together with multi-scale expansions in space and time, to 
generate a simplified set of equations for the average density field and the density fronts. In 
this approach, the average density field is determined by a balance between the parallel loss 
term nσ  and a source term governed by the collisional diffusion of particles out of the front, 
typically ⊥τ/~n , where the time scale ⊥τ  will depend on D and the characteristic scale of the 
front. The field n~  is defined with two spatial dependences, one that characterises the 
geometry of the fronts, and we shall assume here that such a shape can be defined statistically 
and the magnitude of the front δn. We shall consider that the dynamics of the latter field is 
representative of the interaction between the density fronts and the average density as well as 
the build-up of the electrostatic dipole that governs the ballistic motion of the front.  
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In this approach, the source term S in Eq. (1) will lead to a source term for δn. The magnitude 
of the density front results from its generation mechanism in the region where the particle 
source S is located. In present simulations S is assumed uniform poloidally and with a 
gaussian radial localisation with characteristic extent LS = 8.5 in units of ρs. In this early 
phase the scale of the front will be that of the most unstable mode of the linear growth. In a 
simplified approach, the front then propagates at a given velocity vF. The characteristic 
duration of the front is τF. A key parameter is then the lag time between the fronts, τlag. All 
these quantities exhibit in fact a distribution. We will consider that they are independent so 
that only the average value is required in the analytical calculation of the scaling of the SOL 
width. 
 
3. Analytical Scaling of the SOL Width 
 
Let us first analyse the balance equation for the averaged density. 
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As stated in Section 2, this equation is a balance between the parallel loss of density, with 
characteristic time τ// = L// / σ, and the source due to particles diffusing out of the fronts. Two 
weight factors determine the magnitude of the source term due to the front, a time ratio and a 
surface ratio. The time ratio, τF / τlag between the time where this source is active τF. and the 
time lag τlag, is thus a measure of the effectiveness of the source in a time average. The 
surface ratio ΣF / Σ is a ratio of the front cross-section, ΣF, and the area where the front is the 
only source term Σ. This ratio is a measure of the effectiveness of the source term in a 
poloidal average. With these definitions, only the steady-state solution of Eq. (2) is relevant 
so that the balance between source and sinks relates the two functions of x, δn and n .  
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Provided the average control parameter (τF ΣF) / (τ⊥τlag Σ) is not a function of x, one finds that 
the two functions δn and n  must exhibit the same exponential decay, λ. Since the fronts 
propagate at a defined velocity, vF, one can relate the front e-folding length to a balance 
between a convective radial transport with effective velocity vF τF / τlag and parallel loss term 
characterised by σ, so that :  
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The velocity of the front is derived from the vorticity equation in Eq. (1) with a time scale 
ordering to retain only the short time terms typically the variation of vorticity due to the front 
poloidal density gradient :  
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This is a local effect so that the integration time is bounded by τF. The detailed shape of the 
front will determine the velocity distribution in the front, while the characteristic velocity will 
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be related to δn.  
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In order to relate the time lag τlag to the ratio nn /δ , one must analyse the source effect in the 
front generation as well as on the overall balance of particles. Regarding the global particle 
balance in the SOL, one considers an average over long times so that the contribution of the 
fronts in the parallel loss term is of order δn τF / τlag. That will be considered to be small with 
respect to n . The loss term in the SOL is then given by λσ yLn *  with )/exp(* λxnn −= . This 
term is balanced by the source term S0 Ly LS where S0 is the magnitude of the source and LS 
the source width. The scale Ly is the poloidal extent of the SOL. One thus finds that the 
magnitude of the mean density is proportional to the source term, as expected since Eq. (1) is 
autonomous with respect to N.  
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A last relation is obtained with the front generation in the source region. One then balances 
the source term integrated over the time τlag, S0 LS τlag ∆F and the particle content of the front, 
δn* ΣF (using ). In the first expression ∆)/exp(* λδδ xnn −= F is the poloidal wave length of 
the most unstable linear mode, it is used as the reference scale of the front. This yields the 
over-density : 
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The time lag is thus related to the density ratio ** // nnnn δδ =  but independent of the 
magnitude and geometry of the source.  
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Combining Eqs.(4 & 9), one finds that the ratio nn /δ  is determined by the geometry of the 
front. 
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Given ΣF = vFτF ∆y where ∆y is the characteristic poloidal extent of the fronts, one finds 

nn /δ  = ∆F / ∆y. This is typically the ratio of the poloidal wave length in the linear phase ∆F 
and of the poloidal extent of the front in the non-linear phase ∆y. Provided that this ratio 
exhibits a weak dependence on the parameters in Eq. (1), one thus finds that nn /δ  is a 
constant that characterises the non-linear evolution of the front width. Eqs. (3 & 4) yields the 
density e-folding length. 
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The area Σ is defined similarly to the area ΣF, with a difference in poloidal extent since we 
have considered the front source to extend over ∆F, Σ = vFτF ∆F, one then obtains the e-
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folding scale λ : 
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In this expression, ∆x = vFτF is the characteristic radial scale of the front. The e-folding length 
appears to stem from convective transport where the characteristic time is governed by a 
diffusion process, τ⊥ = A⊥

2 ∆F
2 / . A⊥ is a scale ratio between the scale that governs the density 

diffusion process out of the front and the reference scale of the front, ∆F. Similarly, let us 
define Ax = ∆x / ∆F. This leads to the scaling of the SOL width : 
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Following the result of the linear analysis, one considers that the front width is determined by 
a balance between the two damping processes that govern the vorticity equation, namely the 
diffusion process of the form –ν ∆ W, where W (W = ∆⊥ ϕ)is the vorticity, and the sheath loss 
term of the order of σ, hence : 
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With this expression one then finds that the SOL width λ scales like σ-5/8 and therefore L//

5/8 
with L// = π qR.  
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FIG. 3. Profile of the average density e-folding length λprofile in blue, 

and profile of the e-folding length of the magnitude of the density front (δn) <λfront> in red,  
the shaded area indicates the width of the distribution of λfront

 
Another analytical investigation based on a simple scaling argument can be carried out. Let us 
assume that the SOL width is governed by a convective transport so that λML ~ VML / σ-. The 
convective velocity is determined by E×B drift due to saturated turbulence, hence VML ~ φML. 
Based on a mixing length argument, the magnitude of the fluctuating field is proportional to 
the linear growth rate γL, so that VML ~ ∆ML γL. Well above the threshold, the linear growth rate 
scales like (g / λML)1/2. This leads to the scaling λML ~ ∆ML (g / λML)1/2 / σ. The L// scaling in 
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this approach will then depend on the scaling of ∆ML. If ∆ML is taken constant, one finds that 
λML scales like L//

2/3. However, if one follows the prescription that ∆ML be the wavelength of 
the most unstable mode in the linear analysis, then ∆ML = ∆F, see Eq. (14), so that λML scales 
like L//

5/6. Both results indicate that the scaling of the SOL width in terms of the connection 
length stands between a diffusive scaling L//

1/2 and a ballistic scaling L//
1.  

 
4. Numerical Analysis of the SOL Width Scaling 
 
Convective transport is used in both analytical calculations presented in Section 3. The 
evidence for such ballistic transport stems from the analysis of test particle transport as well 
as transport analysis of the profiles in terms of diffusion and convection transport. In both 
studies, one finds that the convective transport is dominant. A systematic statistical analysis 
has been performed. Based on these statistics, one finds that the motion of the fronts can be 
characterised by a velocity that varies slowly along the trajectory. A rather broad distribution 
of velocity is obtained, Fig.(2). This data indicates that one can describe the transport in terms 
of a given average convective velocity. 
 
The statistical analysis also allows one to compare the e-folding length of the average density 
and that of the front magnitude, Fig.(3). For the density fronts, a distribution is obtained. The 
average value appears to support the identical e-folding length for both fields as introduced in 
Section 3. Finally, a scan of the connection length has been performed, Fig.(4). The 
simulation results are in line with a scaling L//

0.63. The scaling based on front propagation thus 
appears to be in excellent agreement with this simulation result, 5/8 = 0.625. However, the 
error bars do not allow one to discard the mixing length scaling that yields the exponent 
2/3 = 0.67. However, the simulation data clearly indicate that the characteristic poloidal scale 
of the electric potential exhibits a dependence in the parameter σ, following Eq. (14), a factor 
~ 2 change is expected with the chosen scan of σ. Although the exact scaling has not be 
checked the observed change is in qualitative agreement with such a result. The more 
appropriate mixing length scaling then leads to the exponent 5/6 ~ 0.83. The simulation data 
is sufficiently robust to discriminate between this value and the scaling indicated on Fig.(4).  
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FIG. 4. Scaling of the density e-folding length λ 

versus the connection length L// = πqR 
 
The analytical calculation based on a two field description of transport, an average value and 
ballistic fronts, thus appears to yield the appropriate scaling of the SOL width. This is an 
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important result, not only for the specific problem addressed in this paper, but more generally 
in order to incorporate the intermittent non-diffusive transport in the modelling effort. Indeed, 
compared to the present status of the modelling effort with 1D transport equations for the time 
averaged profile, one only requires one extra 1D equation for the dynamics of the magnitude 
of the fronts. This is far less demanding than running a global 3D fluid simulation in order to 
incorporate the appropriate transport in the modelling effort. 
 
5. Discussion and Conclusion 
 
In the analysis of the intermittent particle transport in the SOL, we have shown that the 
density field could be split into an average density profile and a set of over-dense fronts. The 
simulation of the plasma turbulence has allowed one to determine the statistical properties of 
the fronts, velocity distribution both radially and poloidally, Fig.(2). For L//  ~1 m, The 
average radial propagation of the fronts is 0.03 cs, with a rather broad quasi gaussian 
distribution. A similar statistical analysis is performed regarding the e-folding length of the 
magnitude of density of the fronts. Again a broad quasi-gaussian distribution is observed, the 
average value being very close to the e-folding length of the average density profile. These 
properties are used to analyse the scaling law of this e-folding length, hence the SOL width in 
terms of the connection length L//. In this approach the average density results from the 
balance between the parallel loss term and a source term due to the collisional diffusion of 
particles out of the fronts. Since the average density and the magnitude of the density in the 
fronts are similar, the characteristic time scales of these processes must be comparable, 
τ// ~ τ⊥. The over-densities are generated in the source region, hence in the case of the SOL in 
the vicinity of the separatrix. The characteristic time lag between two fronts is such that 
τlag ~ τ// / 5, while the characteristic lifetime of a front is τF ~ τ// /25(with L//  ~1 m). This 
ordering is an a posteriori justification for the separation of the density field into the average 
field and the fronts. This allows one to compute the scaling law of the SOL width in terms of 
the connection length, since τ// ~ L// / cs, and thus the major radius of the device. The exponent 
computed with the simulation data and the exponent derived analytically, are found to be in 
excellent agreement, ~0.63 with both methods. An alternative mixing length argument 
provides a similar value, 0.667.  
 
These exponents are slightly bigger than that expected from a diffusive scaling law. They are 
smaller than would be found with a purely convective transport. When scaling up present 
experimental to ITER, one can then expect a larger SOL width than given by a diffusive 
scaling. This favourable trend is balanced by the fact that the separatrix density will be lower 
for a given particle source, see Eq.(7), and that the main chamber wall recycling will be 
enhanced. 
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