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Abstract.  Numerical evidence of non-diffusive transport in 3-dimensional, resistive, pressure-gradient-driven
plasma turbulence is presented. It is shown that the probability density function (pdf) of tracers is strongly non-
Gaussian and exhibits algebraic decaying tails. To describe these results, a transport model using fractional
derivative operators in proposed. The model incorporates in a unified way non-locality (i.e., non-Fickian
transport), memory effects (i.e., non-Markovian transport), and non-diffusive scaling features known to be
present in fusion plasmas. There is quantitative agreement between the model and the turbulent transport
numerical calculations. In particular, the model reproduces the shape and space-time scaling of the pdf, and the
super-diffusive scaling of the moments.

1. Introduction

Experimental and theoretical evidence suggests that transport in fusion plasmas deviates from
the standard diffusion paradigm. Some examples include the confinement time scaling in L-
mode plasmas [1], rapid propagation phenomena and non-local behavior observed in
perturbative transport experiments [2,3,4], and inward transport observed in off-axis fueling
experiments [5,6].  The limitations of the diffusion paradigm can be traced back to the
restrictive assumptions in which it is based. In particular, Fick’s law, one of the cornerstones
of diffusive transport, assumes that the fluxes, which contain the dynamical information of the
transport process, only depend on local quantities, i.e. the spatial gradient of the field(s).
Another key issue is the Markovian assumption that neglects memory effects in the transport
process.  Also, at a microscopic level, standard diffusion assumes the existence of an
underlying Gaussian, uncorrelated stochastic process (i.e. a Brownian random walk) with well
defined characteristic spatio-temporal scales.

Motivated by the need to develop models of non-diffusive transport, we discuss here a class
of transport models that incorporate in a unified way non-Fickian transport, non-Markovian
processes or “memory” effects, and non-diffusive scaling. At a microscopic level, the
proposed models assume an underlying stochastic process without characteristic spatio-
temporal scales that generalizes the Brownian random walk.  As discussed below, these
stochastic processes are intimately linked to Levy stable distributions.

As a concrete case study to motivate and test the model, we consider tracers transport in
three-dimensional, pressure-gradient-driven turbulence. In this system changes in the pressure
gradient trigger instabilities at rational surfaces that locally flatten the pressure profile and
increase the gradient in nearby surfaces. This is turn leads to successive instabilities and
intermittent, avalanche-like transport [7], which together with the trapping effects of the
turbulent eddies has been observed to cause anomalous diffusion [8].  By anomalous diffusion
we mean that the moments of the radial displacement of tracers grow as 

€ 

xn ~ t nν , where

contrary to the standard diffusion case, ν ≠1/ 2 .  Our goal is to construct a macroscopic
model for the tracer particles probability density function (pdf) using fractional derivative
operators in space and time.
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The rest of this paper is organized as follows. In the next section, we describe the turbulence
model, and present the numerical results of tracers transport. The proposed fractional
transport model is discussed in Sec. 3. In Sect. 4, we compare the turbulent transport
numerical results with the fractional model, and discuss preliminary results on transport
studies  in no-steady turbulence. The conclusions are presented in Sect. 5.

2. Pressure-gradient-driven turbulence model

The turbulence model used in the transport calculations is based on an electrostatic
approximation of the reduced magnetohydrodynamic equations [9]. The model describes the
evolution of the   
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The magnetic field corresponds to a stellarator-like equilibrium with a toroidal component

€ 

B0 ,
and a q –profile, 

€ 

q =1/(0.53+ 0.5 r2) . The tildes indicate fluctuating quantities (in space and
time), and the angular brackets, 

€ 

, denote flux surface averaging over the cylinder at a fixed
radius.  The equilibrium density is 

€ 

n0 , the ion mass is 

€ 

mi , the averaged radius of curvature of
the magnetic field lines is 

€ 

rc , and the resistivity is 

€ 

η.  The subindices  

€ 

⊥ and || denote the
direction perpendicular and parallel to the magnetic field respectively. The dissipative terms
in Eqs. (1) and (2) have characteristic coefficients 

€ 

µ (the collisional viscosity) and 

€ 

χ⊥  (the
collisional cross-field transport) respectively.  A parallel dissipation term, proportional to 

€ 

χ|| ,
is also included in the pressure equation. The instability drive is the flux surface averaged
pressure gradient, 
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The term 

€ 

S0 , which is a function of r, represents a source of particles and heat due, for
instance, to neutral beam heating and fueling. Here we assume 

€ 

S0 = S 0 1− r /a( )2[ ].

To study transport we follow particle tracers advected by the   

€ 

r 
E ×

r 
B  turbulent velocity field,
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Since the magnetic field is static, the tracers provide a Lagrangian description of the
electrostatic turbulence in the model. The numerical calculations were performed using

€ 

25 ×103  tracer particles with initial conditions randomly distributed in 

€ 

θ  and z on the surface
of a cylinder of radius r=a/2. In their evolution, the tracer particles either get trapped in the
eddies shown in Fig.1 for long times, or jump over several eddies in a single “flight”. The
combination of these trapping and flight events leads to anomalous diffusion.
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Our main object of study   is the probability density function (pdf) of radial displacements of
tracers, P(x,t), where 

€ 

x = δ r /a and 

€ 

t = τ /τR , where 

€ 

τR = a2µ0 /η  is the resistive time. By
definition, at t=0, 

€ 

P = δ x( ). As t advances, the pdf broadens and develops tails.  Figure 2
shows the pdf P(x,t) as function of x at t=0.64 obtained from the histogram of particle
displacements. The log-normal scale of the plot makes evident the strong non-Gaussianity of
the density function (in this scale a Gaussian is a parabola).

          

The evolution in time of the pdf at a fixed radial position is shown in Fig. 3.  In addition to
the spatio-temporal dynamics of the pdf, we have computed the moments  of the radial
displacements, and consistent with [8], have observed superdiffusive scaling 

€ 

xn ~ t nν  with

€ 

ν ≈ 0.66 ± 0.002.

3. Fractional diffusion transport model

The generic form of the proposed model for tracer transport in pressure-gradient-driven
plasma turbulence in the one-dimensional domain x ∈ a , b( )  is [10]

  0
cDt

β P = χ w−
aDx

α + w+
xDb

α( )P                                       (5)

where the left hand side is the fractional derivative in time of order β , and the two terms on
the right hand side are the left and right Riemann-Liouville fractional derivatives of order α
respectively, and χ  is a constant. Fractional derivatives are integro-differential operators that

FIG. 1. Fluctuating electrostatic

potential ˜ Φ at a fixed time obtained
from the numerical integration of the
resistive, pressure-gradient-driven
turbulence model in Eqs.(1)-(3). The
observed eddies are responsible for the
trapping of particle tracers that causes
anomalous diffusion.

FIG. 2. Probability density function
of tracers as function of x, at fixed
time, in pressure gradient driven
plasma turbulence. The triangles are
the results from the turbulent
transport calculation, and the solid
line denotes the pdf according to the
fractional transport model with
α = 3/ 4 ,  and  β =1/ 2.  In
agreement with the model, the tails
of the pdf decay algebraically as

€ 

P ~ x−(1+α ).

Comparison between the
turbulence transport calculation
and the fractional diffusion
model.
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naturally generalize the concept of differentiation to fractional orders. As expected, for β =1 ,

0
cDt

β =∂ t , and for α = 2 , a Dx
α =∂ x

2 .  Most results from regular calculus directly translate to
the fractional calculus formalism that in recent years have found an increasing number of
applications in science and engineering [11].

For 0 < α < 1  and 0 < β <1 , the range of parameter values of interest here, the model can be
rewritten in the more familiar form

  

∂ P
∂ t

=− χ
∂
∂ x

w− Γl + w+ Γr[ ]                                              (6)

where the fluxes are defined as
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with K an algebraic decaying function of the form

    K x − y;t −τ( ) = 1
Γ 1 −α( )Γ β( )

1
t −τ( )1−β x − y( )α

                            (8)

 Thus, in the model, non-Fickian effects due to avalanche-like events that induce Levy flights
in the tracers, are described using non-local, integro-differential operators in space. The flux
at a point x consists of a “left-sided” contribution   Γl from the a, x( )  interval, and a “right-
sided” contribution Γr  from the x,b( )  interval. The time integrals in the fluxes, account for
non-Markovian effects due the trapping of tracers in eddies. The relative weight of   Γl and Γr
is determined by w+  and w−  that are functions of α , and θ , a parameter that determines the

P ~ t β
P ~ t −β

FIG. 3. Probability density function
of tracers as function of t, at a fixed
radial postion, in pressure-gradient-
driven plasma turbulence. The
circles and crosses are the results
from the turbulent transport
calculation, and the solid line
denotes the pdf according to the
fractional transport model with
α = 3/ 4 ,  and  β =1/ 2.  In
agreement with the model, the rise
and decay of the tails follow the
algebraic scaling 

€ 

P ~ t ± β .
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asymmetry of the transport process. For a symmetric process, the case of interest here, θ = 0 ,
and w+ = w− = −sec(πα / 2) / 2 .

Because the individual tracers follow the turbulent velocity field   

€ 

r ˜ V  according to Eq.(4), the

pdf of the tracers satisfies 
  

€ 

∂t +
r ˜ V ⋅ ∇( ) P = 0 . Comparing this equation with Eq.(6), we can

intuitively envision the fractional model  as a way to encapsulate or renormalize the non-

linear effects of the turbulent velocity field   

€ 

r ˜ V  into an effective transport  operator involving

non-local fluxes according to the prescription    

r ˜ V ⋅∇⇒ χ∂ x w− Γl + w+ Γr[ ] . In this regard,
the results presented here represent a first step in a phenomenological renormalization of
plasma turbulence using fractional operators.

The physics behind the fractional model can be further understood from the connection
between transport models and the theory of random walks [12]. To explain this, recall that the
diffusion model is a macroscopic description of the Brownian random walk which assumes
that particles experience uncorrelated, random displacements, or jumps,   

€ 

ζ = ζ1,ζ 2,Lζ iL ,
where 

€ 

ζ  is drawn from a pdf 

€ 

λ ζ( )  with finite second moment. In the problem of interest here,
this simple Brownian walk picture does not apply because the turbulent eddies tend to trap the
tracers, and "avalanche-like" transport events induce large displacements.  An elegant and
powerful model that incorporates these phenomena is the continuous time random walk
(CTRW) [13,14]. This model introduces in addition to the jump pdf 

€ 

λ ζ( ) , a waiting-time pdf

€ 

ψ τ( ) . That is, contrary to the Brownian model in which particles jump at regular time
intervals, the CTRW assumes that the waiting time between jumps, 

€ 

τ i = ti − ti−1, is a random
variable with pdf 

€ 

ψ τ( ) .  Most importantly, the CTRW model place no restrictions on the
trapping and jumps pdfs, allowing the possibility of describing a large variety of non-
Gaussian transport processes including, for example, non-Markovian effects [15].  In the
CTRW the probability of finding a particle at point x at time t is determined by the master
equation

€ 

P(x, t)=δ(x) ψ(t ')dt'+
t

∞

∫ ψ(t − t ') λ(x − x')P(x ',t')dx '
−∞

∞

∫[ ]dt '0

t
∫    (9)

The first term on the right hand side is the contribution to P of particles that have not moved
during the time interval (0,t), and the second term denotes the contribution to P of particles
located at 

€ 

x' and  jumping to x during this time interval.  Given ψ  and λ , in the continuum,
fluid, limit Eq. (9) leads to an evolution equation for P(x,t). In particular, for an exponential
decaying ψ , and a Gaussian distributed λ , Eq.(9) reduces to the diffusion equation.
However, for algebraic decaying trapping times and jump distributions of the form
ψ ~ τ − (1+β ) , λ ~ζ −(1+α)  Eq.(9) reduces in the fluid limit to the fractional Eq.(5). Note that in

this case, because of the algebraic decay, τ  and ζ 2 diverge, that is, there are no

characteristic spatio-temporal scales. Thus, based on the CTRW model, the proposed
fractional transport model can be conceived as a macroscopic description of an underlying
“microscopic”, non-Gaussian stochastic process exhibiting long trapping events and Levy
flights with no characteristic scale.
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4. Comparison of fractional model with turbulence model

The solution of the fractional diffusion model in Eq.(5) for a general initial condition P(x,0)
can be written as

€ 

P(x, t)= Gαβθ (x − x ',t)P(x ',0)dx '∫                                       (10)

where 

€ 

Gα βθ  is the Green's function or propagator giving the transition probability that a

tracer located in 

€ 

′ x  at t=0 exhibits a displacement 

€ 

x − ′ x  at time t. As expected, in the
standard diffusion case, α = 2, β = 1  and 

€ 

θ = 0, 

€ 

Gα βθ  reduces to a Gaussian distribution.

For different values of α , β  and θ ,  Eq.(10) reproduces a wide variety of non-Gaussian
distribution functions. In particular, for α ≠ 2  and β =1 , 

€ 

Gα βθ  reduces to an important class
of distributions known as Levy, α -stable distributions that are ubiquitous in non-Gaussian
stochastic processes. For transport in pressure-gradient-driven plasma turbulence, it turns out
that α = 3/ 4, β = 1/ 2  and θ = 0  [10].

Consistent with the radially localized initial condition used in the tracer particles numerical
calculations, we consider an initial condition of the form 

€ 

P = P0 /ε  for 

€ 

| x |≤ ε /2  and zero
otherwise, where ε  is a small parameter. Figure 2 shows a very good agreement between the
solution of the fractional diffusion model and the turbulent transport results at a fixed time.
Consistent with the asymptotic properties of the solution of the fractional model [10], and in
agreement with the turbulent transport results, the pdf exhibits the algebraic decay

€ 

P(x, tc ) ~ x
−(1+α ).  That is, 

€ 

α , the order of the fractional derivative operator in space
determines the decay exponent of the pdf in space at a fixed time.

To understand the role of the parameter 

€ 

β  we show in Fig. 3 the pdf as function of time at a
fixed spatial location. Again, consistent with the asymptotic properties of the solution the pdf
exhibits an algebraic growth and eventual decay of the form 

€ 

P(xc,t) ~ t
±β . That is, 

€ 

β , the
order of the fractional derivative operator in time, determines the algebraic growth and decay
of the pdf in time at a fixed position. The scaling of the moments xn ~ t nν  provides another
test of the model. From the scaling properties of the fractional equation it follows that
ν = β /α = 2/ 3 a value in very good agreement with the turbulence calculation result

€ 

ν ≈ 0.66 ± 0.002.

In all the previous calculations, we restricted attention to steady-state turbulence. That is, in
the numerical calculations the tracers were followed after the transient effects have died and
the turbulence have reached a steady state. Figure 4 shows some preliminary results in the
non-steady turbulence regimen. In this case the focus is in the short time evolution of a large
pulse perturbation in the pressure. Figure 4a shows the space-time evolution of a negative
pulse (with the steady-state turbulence background substracted). Some interesting
asymmetries are observed, in particular in this transient regimen, the inward propagation of
the pusle is significantly faster that then outward spreading. To quantify the spreading of the
turbulence we have plotted in Fig. 4b the time evolution of the normalized second moment of
positive and negative  pressure pulses as function of time.  In both cases it is observed the
moments exhibit superdiffusive scaling 

€ 

δ˜ p 2 ~ t 2ν  with an anomalous exponent ν ≈ 0.63
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remarkably close to the exponent of the fractional model.  Despite this encouraging
preliminary result, more work in needed in the fractional diffusion description of non-steady
turbulent transport. A crucial aspect of this problem is the modeling of the inward-outward
transport asymmetry.

FIG 4. Anomalous diffusion of a pressure pulse in non-steady pressure-gradient-driven plasma
turbulence. Panel (a) shows the space time evolution of a localized , large negative pressure pulse
initial condition. The thick lines in panel (b) show the evolution in time of the normalized second
moment of a negative (red) and positive (blue) pulse. The thin lines are power law fits. Consistent with
the fractional diffusion scaling, the second moments exhibit superdiffusive scaling with  ν ≈ 0.63 .

5. Conclusions

In this paper we have proposed and tested a transport model for tracer particles in plasma
turbulence.  The model is formulated using fractional derivative operators that generalize the
concept of differentiation to fractional orders.  From a physical point of view, fractional
derivatives are a natural tool to model non-local effects in space and time. In the case of
fractional derivatives in space, the slow, algebraic decay of the fractional derivative kernel
accounts for long-range effects in the flux. In a similar way, fractional derivatives in time
allow the incorporation of memory, i.e. non-Markovian effects. Both effects, spatial non-
locality and memory, are likely to be present in fusion plasmas. The fractional model can be
conceived as a macroscopic description of an underlying microscopic, non-Gaussian
stochastic process (non-Brownian random walk) with no characteristic scales.  It was shown
that there is quantitative agreement between the fractional model and the turbulent transport
numerical calculations.

In the case of homogenous, isotropic, fully developed turbulence, Gaussian closure
approximations lead to transport models based on effective diffusivities. However, the
complexity of pressure-gradient-driven plasma turbulence invalidates the Gaussian
assumptions. As a first step to overcome the limitations of Gaussian closures, here we have
shown that   

r 
E ×

r 
B  turbulent transport can be modeled with non-diffusive operators involving

fractional derivatives.

r/a
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The fractional transport model discussed here is linear, and an interesting important problem
is to understand the interplay of nonlinearity and fractional diffusion. As a first step in this
direction we have added to Eq.(5) a nonlinearity of the form P 1 − P( ) , typically used in
reduced models of the L-H transition. Numerical and analytical results on this model indicate
that nonlinearity and fractional diffusion lead to exponential propagation of fronts [16]. This
results might be relevant in the study of rapid propagation phenomena in the L-H transition.
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