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Abstract. Fundamental theory, experimental observations, and modeling of resistive wall mode
(RWM) dynamics and active feedback control are reported. In the RWM, the plasma responds
to and interacts with external current-carrying conductors. Although this response is complex,
it is still possible to construct simple but accurate models for kink dynamics by combining
separate determinations for the external currents, using the VALEN code, and for the plasma’s
inductance matrix, using an MHD code such as DCON. These computations have been performed
for wall-stabilized kink modes in the HBT-EP device, and they illustrate a remarkable feature
of the theory: when the plasma’s inductance matrix is dominated by a single eigenmode and
when the surrounding current-carrying structures are properly characterized, then the resonant
kink response is represented by a small number of parameters. In HBT-EP, RWM dynamics are
studied by programming quasi-static and rapid “phase-flip” changes of the external magnetic
perturbation and directly measuring the plasma response as a function of kink stability and
plasma rotation. The response evolves in time, is easily measured, and involves excitation of
both the wall-stabilized kink and the RWM. High-speed, active feedback control of the RWM
using VALEN-optimized mode control techniques and high-throughput digital processors is also
reported. Using newly-installed control coils that directly couple to the plasma surface, exper-
iments demonstrate feedback mode suppression in rapidly rotating plasmas near the ideal wall
stability limit.

1. Introduction

Among fusion’s significant accomplishments dur-

FIG. 1. Schematic of the HBT-EP
(a) “smart-shell” and (b) “mode-
control” sensor and control coils.

ing the past decade is the improved understanding
and control of long-wavelength kink instabilities that
grow on the rate of resistive penetration of a nearby
conducting wall, γw. These slowly growing instabili-
ties, called resistive wall modes (RWM), appear when
nonaxisymmetric eddy currents in the wall oppose, or
wall-stabilize, fast ideal kink modes. When the RWM
is controlled, tokamaks and spherical tori can oper-
ate with high plasma pressure making possible ad-
vanced steady-state operating scenarios having good
confinement and low current drive power requirements
[1]. Stabilization of the RWM has been seen in toka-
mak experiments through sustained plasma rotation
[2] or by active feedback control [3, 4]. Using the
3D electromagnetic modeling code VALEN [5], experi-
ments have been realistically modeled, theoretical pre-
dictions have been benchmarked, and advanced con-
trol systems have been designed for several toroidal
devices including HBT-EP [6], DIII-D, NSTX, JT-60SC, FIRE, and ITER. Although
tremendous progress has been made, important questions remain concerning the physics
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of plasma dissipation, the torque applied between the RWM and the external conductors,
the dynamics of wall-stabilized kink modes, and the development of practical techniques
that insure robust feedback control of the RWM [7].

This paper begins with a presentation of the fundamental theory behind the VALEN

code and describes a general eigenmode procedure that can be used to implement opti-
mized feedback systems for the RWM. Quantitative modeling requires (i) accurate infor-
mation about the inductive coupling between current carrying structures and coils that lie
outside the plasma and (ii) the equivalent currents on the plasma surface that represent
the normal field of the perturbed plasma response, δBn.

These quantitative models provide an useful in-
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FIG. 2. The amplitude of the first ex-
pansion function, f1(θ, ϕ), correspond-
ing to the unstable plasma mode.

terpretation of HBT-EP experiments. The HBT-
EP tokamak was specially designed for systematic
investigation of the effects of wall position and con-
ductivity on kink mode stabilization and for the
testing of sensor and control coil configurations for
active control. Previous HBT-EP experiments de-
monstrated passive stabilization [8], observed the
extent of mode structure variation with wall con-
figuration, and directly measured the stabilizing
eddy-currents [9]. The RWM instability was ex-
cited in HBT-EP when alternating segments of the
previous HBT-EP wall were replaced with thin,
more resistive wall segments [3]. RWM modes are
also excited in stable plasma when control coil cur-
rents are programmed to resonate with the rela-
tively simple eigenmodes observed in HBT-EP dis-
charges [10]. We find the magnitude and phase
of the observed resonant error field amplification
implies a high torque parameter, α ∼ 1, that is
fundamentally proportional to plasma dissipation [14] and defines the so-called “high dis-
sipation” regime of RWM dynamics [15, 16]. This same parameterization also explains
the observed dynamical response that follows a rapid “phase-flip” change of the exter-
nal control coils [10]. Finally, using newly installed sensors and control coils (Fig. 1)
that implement “optimized mode-control” feedback [6], we report the suppression of wall-
stabilized kink modes in rapidly rotating plasma near the ideal wall stability limit.

2. Fundamental Theory

The response of a plasma to externally driven magnetic perturbations is an important
topic in its own right and an essential element in the theory of resistive wall modes.
Computational studies require not only the determination of the plasma response to
external magnetic perturbations but also the inductive response of external conductors.
Fortunately the calculation of these two responses can be separated. The separation arises
from the magnetic interaction between the plasma and the external conductors being
transmitted by a divergence and curl free magnetic field. In other words, the interaction
field, δ ~B, is transmitted through the annular region surrounding the plasma by a solution
to Laplace’s equation, ∇2φ = 0 with δ ~B = ~∇φ.

The theory of Laplace’s equation implies that all of the magnetic effects of a plasma
on the external world are given by the change in the tangential magnetic field at the
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plasma surface that arises in response to a perturbation in the normal magnetic field.
The tangential components of δ ~B = ~∇φ determine φ on the surface while the normal
component of δ ~B determines n̂ · ~∇φ. If both φ and n̂ · ~∇φ are known on the plasma
surface, then the theory of Laplace’s equation says that one can obtain a unique answer
for the magnetic field due to the currents in the plasma, δ ~Bp(~x), throughout the region
external to the plasma.

This property of Laplace’s equation is illustrated by a cylindrical model of the plasma
and the surrounding conductors. There are two types of solutions: (1) a solution that
vanishes far from the plasma, the 1/rm solution, that is due to currents in the plasma
region and (2) a solution that would become singular far from the plasma, the rm solution,

that is due to currents in the external conductors. Given n̂ · δ ~B = ∂φ/∂r and φ on a
cylindrical surface, both solutions can be determined. The part of the solution due to the
plasma currents, the 1/rm solution, is valid in the entire region outside of the plasma.

In principle, the response of external conductors could also be represented by a re-
lation between φ and n̂ · ~∇φ on a surface. However, the external conductors present a
more complicated problem than the plasma for two reasons. First, the time scale of the
resistive wall mode is determined by the resistive time scales of the wall and other ex-
ternal conductors. This means that the tangential magnetic perturbation depends, not
only on the present normal magnetic perturbation, but also on its values in the past in
a relatively complicated way. In many cases of practical interest the plasma time scales
are either very long or very short compared to the resistive time scales of the wall, which
eliminates this complication. Second and more importantly, some of the external currents
are actively controlled while others are reactive. Consequently an accurate determination
of the currents in external conductors requires a code such as VALEN [5].

For perturbations that have a time scale significantly different from that of the plasma,
the plasma response is completely described by a matrix that relates the expansion coef-
ficients of the normal magnetic field, n̂ · δ ~B = n̂ · ~∇φ, and the potential φ on the plasma
surface in any set of orthogonal functions. However, it is more convenient to use the
expansion coefficients of the plasma current potential κp instead of those of φ. A current
potential κ is the jump in the scalar potential for a magnetic field across a surface current,
κ ≡ −[φ]/µ0.

Two distinct current potentials can be defined using the functions n̂ · δ ~B and φ at
the location of the unperturbed plasma surface, ~xp(θ, ϕ). One gives the magnetic field
produced by the perturbed plasma currents in the region external to the plasma. This
current potential is κp(θ, ϕ) ≡ µ0(φI − φ), where φI is the vacuum solution, evaluated on
the plasma boundary, in the region occupied by the plasma with the boundary condition
n̂ · ~∇φv = n̂ · δ ~B. The second gives the magnetic field due to the external currents in the
region interior to the plasma surface. That current potential κx = µ0(φ − φx), where φx

is the vacuum solution in the exterior region.
The magnetic field due to a current potential on the plasma surface, ~xp(θ, ϕ), is

δ ~B(~x) =
µ0

4π

∮ ~K × ~R

R3
da =

µ0

4π

∮ 3~R

R5
~R · − 1

R3

κd~a, (1)

where the surface current is
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)
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the area element is da = |(∂~xp/∂θ)× (∂~xp/∂ϕ)| dθdϕ, and ~R ≡ ~x−~xp. The expression for
~K is obtained from Ampere’s law µ0

~K = n̂× [δ ~B] = n̂× ~∇[φ], the definition κ ≡ −[φ]/µ0,
and the theory of general coordinates. The current potential κ has units of Amperes and
is a magnetic dipole moment per unit area.

Equation (1) gives a linear relation between

FIG. 3. Measurements of static-field reso-
nant field amplification, ARWM , as a func-
tion of stability parameter, s̄. The ob-
served amplification implies a large torque
parameter, ᾱ ∼ 1, associated with high
dissipation.

FIG. 4. Kink stability diagram for HBT-
EP in the high dissipation regime.

a current potential κ and the normal magnetic
field on the plasma surface. This linear relation
determines an inductance matrix L. To define
this matrix, let fi(θ, ϕ) be any set of functions
that are orthogonal when integrated over the
plasma surface,

∮
f ∗i fjda/A = δij where A ≡∮

da is the area of the surface. The normal com-
ponent of the magnetic field on the surface ~xp

produced by the current potential κ can be ex-
panded in the fi as n̂ · δ ~B =

∑
i Φif

∗
i (θ, ϕ)/A.

The expansion coefficients, the Φi, have units of
magnetic flux. The current potential can be ex-
panded in terms of the fj as κ =

∑
J∗j fj(θ, ϕ),

where the expansion coefficients J∗j have units
of Amperes. The L matrix, which is determined
by Equation (1), gives Φi =

∑
LijJj or ~Φ = L· ~J .

The matrix L is always positive and Hermitian,
and its square root can be calculated using the
square root of its eigenvalues.

The two current potentials κp and κx, which

were defined in terms of φ and n̂ · ~∇φ on the
plasma surface, can also be expanded in the or-
thonormal functions fi. The current potential
that represents the perturbed plasma current is
expanded as κp =

∑
I∗j fj, which implies that the

normal magnetic field at the location of the un-
perturbed plasma surface due to the perturbed
plasma currents is n̂ · δ ~Bp =

∑
Φ

(p)
i f ∗i /A with

~Φ(p) = L · ~I. Similarly, the current potential that represents the external magnetic field
is expanded as κx =

∑
J∗j fj, and the normal magnetic field at the location of the un-

perturbed plasma surface due to the external currents is n̂ · δ ~Bx =
∑

Φ
(x)
i f ∗i /A with

~Φ(x) = L · ~J .
The normal magnetic field perturbation on the plasma surface has been separated

uniquely into a part due to the perturbed plasma currents and a part due to the external
currents, n̂ · δ ~B = n̂ · δ ~Bp + n̂ · δ ~Bx. The flux expansion coefficients of n̂ · δ ~B are ~Φ =
~Φ(p) + ~Φ(x). Using κp, the Biot-Savart integral of Equation (1) determines the magnetic

field due to the plasma currents, δ ~Bp, at any point ~x outside of the plasma.
For a non-rotating plasma that obeys the constraints of ideal magnetohydrodynamics

(MHD), one can use an MHD stability code, such as Alan Glasser’s DCON, to find an induc-

tance matrix Λ, which is defined by ~Φ = Λ · ~J . The Λ matrix gives a complete description
of the external magnetic response of the plasma. The energy required to perturb an ideal
plasma is δW = ~J† · ~Φ/2 = ~Φ† · Λ−1 · ~Φ/2, which is the δW of ideal MHD [11]. DCON
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provides a set of energies, δW , and their corresponding n̂ · δ ~B distributions on the plasma
surface, which is sufficient information to determine Λ [13]. The required calculations to
determine Λ from DCON data have been carried out for a number of HBT-EP, DIII-D and
JT-60SC cases [17]. Fig. 2 shows the amplitude of the first expansion function, f1(θ, ϕ),
computed over the unperturbed plasma surface for HBT-EP. It corresponds to the unsta-
ble plasma mode, as determined by DCON. The structure of this mode is kept unchanged
by using the Gram-Schmidt orthonormalization process to construct expansion functions,
fi(θ, ϕ), from the normal magnetic field distribution on the plasma surface provided by
DCON.

The external magnetic response of a

FIG. 5. The “single-mode” stability diagram for
HBT-EP (top) showing rotation stabilization in the
high-dissipation regime. Summary of “phase-flip”
measurements (bottom) showing strong kink exci-
tation at high s.

plasma is completely characterized by
the Λ matrix whenever the time scales
of the plasma are disparate from those
of the resistive wall mode or other exter-
nal perturbations. However, the physics
of the response has a simpler character-
ization through the dimensionless sta-
bility matrix, which is defined by S ≡
L1/2·Λ−1·L1/2. If a non-rotating plasma
obeys the constraints of ideal MHD, S is
Hermitian. Its real eigenvalues are −sj,
the stability coefficients. The plasma
amplifies an external perturbation if sj >
−1 and reduces perturbations if sj <
−1 If at least one of the sj is positive,
the amplification is sufficiently great that
the plasma is unstable. For a more gen-
eral plasma model S in not Hermitian,
and its eigenvalues are complex num-
bers, −sj + iαj. The imaginary part of
the eigenvalue [13] gives the toroidal torque, Tϕ, exerted on the plasma by the exter-

nal conductors, Tϕ =
∫
(∂~xp/∂ϕ) · ( ~Kp × δ ~Bx)da, which can also be written as Tϕ =

−
∮
(∂κp/∂ϕ)δ ~Bx · d~a. ~Kp is the surface current obtained from the current potential κp,

and the integral is over the plasma surface. Plasma rotation changes both the real and
the imaginary parts of the eigenvalues of S. In a simple plasma model, the changes in
both are linear in the toroidal rotation frequency of a slowly rotating plasma, and slow
rotation is stabilizing [13]. Unless the toroidal torque is small, |αj| << 1, the structure
of a magnetic perturbation must be changed substantially from its ideal MHD form. If
|αj| > 1, the plasma currents that produce the torque on the plasma strongly shield the
external magnetic perturbation.

The simplest representation of plasma response for inclusion in a code like VALEN is
the current potential of the plasma, κp, that arises from an arbitrary external normal field

on the plasma surface, n̂ · δ ~Bx. This is equivalent to giving the expansion coefficients of
κp, the ~I, in terms of the expansion coefficients of n̂ · δ ~Bx on the plasma surface, the ~Φ(x).

Simple matrix algebra implies ~I = L−1/2 · (S−1 − 1) · L−1/2 · ~Φ(x). If an eigenvalue of the
stability matrix, −sj + iαj, is much smaller in absolute value than the other eigenvalues,
then the associated eigenmode dominates the plasma response. Models based on the
approximation of keeping only the term in S with the smallest eigenvalue is called the
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single-mode model. Within the single-mode model, it is relatively simple to empirically
find the real and the imaginary parts of the eigenvalue, the s and the α, that represent
the plasma response to magnetic perturbations produced by external currents.

3. Measurement of Kink Mode Dynamics

RWM dynamics are studied experimentally as a function of kink stability and of plasma
rotation by direct measurement of the plasma response to both quasi-static and rapid
“phase-flip” changes in external resonant magnetic perturbations [10]. The plasma reso-
nant response is characterized by an amplitude and phase that are directly related to the
dominate complex eigenvalue, s+ iα. In order to compare measurement with theory, (i)
the evolution of the plasma equilibrium is reconstructed from measurements and trans-
port models of plasma current diffusion, (ii) the (m,n) = (3, 1) kink mode structure is
computed by the DCON MHD, and (iii) VALEN is used to accurately compute the wall pen-
etration rate for the resonant fields, γw ≈ 5 ms−1, and the coupling coefficient, c ∼ 0.17,
between the segmented external conducting structures (Fig. 1) and the kink mode. Ad-
ditionally, the effective natural toroidal rotation rate of the plasma and kink mode, Ω, is
obtained from the unperturbed rotation of MHD instabilities, a two-fluid force balance
[18], and high-speed optical measurements of Doppler-shifted impurity lines [19].

The response to an externally-programmed resonant error field evolves in accord with
the wall’s resistive diffusion equation, (dψw/dt)+(γw/1−c) (ψw −

√
cψa) = γwψc, with the

perturbed magnetic flux, ψc, being specified by it’s value at the conducting wall without
plasma. ψa and ψw are, respectively, the perturbed fluxes at the plasma surface and at
the wall, and these fluxes can be measured in HBT-EP. A dynamical equation relating
the perturbed flux at the plasma surface to the resonant flux at the wall was derived by
Fitzpatrick and Aydemir [15, 16],

1

γ2
MHD

d2ψa

dt2
−
(
ᾱ

Ω
+

2iΩ

γ2
MHD

)
dψa

dt
+
(
1− s̄+ iᾱ− Ω2/γ2

MHD

)
ψa =

ψw√
c
. (3)

The terms containing the ideal MHD growth rate, γ−2
MHD, represent small corrections that

can usually be ignored, and the eigenvalue, (s̄, ᾱ), is normalized to the ideal wall stability
limit, scrit ≡ c/(1− c). Eq. 3 was derived from reduced MHD assuming a dissipation rate,
νd, from anomalous perpendicular viscosity, but any linear dissipation rate [14] leads to a
torque parameter that scales with dissipation as ᾱ = −νdΩ/γ

2
MHD.

The plasma response from Eq. 3 takes a simple form when the plasma is rotating slowly,
Ω/γw � 1, and near the no-wall limit, s̄ ∼ 0. In this case, the flux ratio depends only upon
the single-mode eigenvalue and the coupling coefficient, (ψa/ψw)−1 =

√
c (1− s̄+ iᾱ). The

other case is appropriate to HBT-EP discharges that operate above the no-wall limit with
the RWM stabilized by plasma rotation (Fig. 4). The torque parameter is significant,
ᾱ ∼ 1, and the perturbed magnetic flux at the plasma surface also depends upon the
dynamics of the wall-stabilized kink found in Eq. 3.

Fig. 3 shows measurements of the amplitude of the amplification of resonant field
errors, |ARWM |, in the HBT-EP experiment [10]. The amplification peaks at marginal
stability for the RWM; however, the degree of amplification, 1 < |ARWM | < 2, remains
relatively small. When the phase and amplitude of the response is compared to Eq. 3,
the measurements dictate the torque parameter to be relatively large, ᾱ ∼ 1.

The resonant response to a rapid, step-change in ψc provides a nearly instantaneous
method to measure the plasma dynamic response and approach to marginal stability
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[10]. Fig. 5 illustrates these measurements by showing the evolution of two discharges
prepared to approach marginal stability of the RWM. When rapid toroidal “phase-flips”
are programmed in the resonant external field, the amplitude and phase of the dynamical
plasma response changes depending on whether the rapid change occurred (earlier) in
more stable or (later) in less stable plasma. A lengthening of the phase-realignment time
marks the approach to marginal stability of the wall-stabilized kink mode. The phase-
flip response serves as a test of models that simulate RWM dynamics in rotating plasma.
Analysis of the measured response from many discharges are superimposed on the stability
diagram in Fig. 4 allowing accurate determination of the normalized stability parameters,
(s̄, ᾱ). With these parameters, the time variations of the amplitude and phase response
are consistent with the single mode theories associated with RWM stabilization.

4. High-Speed Digital Mode Control

As described previously [6], active feedback control
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FIG. 6. Results of the appli-
cation of active feedback control
to unstable, rapidly rotating kink
modes.

of the the RWM can be optimized by (i) reducing the
mutual inductive coupling between the control and sen-
sor coils, (ii) increasing the direct coupling of the con-
trol coils to the plasma surface, and (iii) reducing the
inductive coupling between the sensor coils and the sta-
bilizing wall. We refer to feedback control systems with
these improvements as “optimized mode control”, and
they are capable of stabilizing kink modes near the ideal
wall stability limit, s̄ ≈ 1.

Using the VALEN code, new control and sensor coils
were designed and installed in HBT-EP in order to test
mode control stabilization of rapidly-rotating, wall-stabil-
ized kink modes. Fig. 1b illustrates the new coil system
consisting of 20 “picture frame” control coils located in
gaps in the segmented wall and 20 inside poloidal field
sensors. The new feedback system improves performance
relative to the previous “smart shell” configuration [3]
by allowing greater bandwidth and a 10 fold increase in
system gain.

In addition to newly-installed and optimized coils, we
have designed and implemented a new high-speed digi-
tal feedback controller using multiple Xilinx II field-programmable gate array (FPGA)
processors. The FPGA processors are packaged with 8 channels each of 16-bit analog-
digital input and digital-analog output. The digital controller operates with a combined
throughput of 64 Mbits/sec and provides a unique and powerful tool for the study of
active feedback control of resistive wall modes.

The initial operation of the controller has been successful [20]. External kink modes
have been suppressed, excited, and rotated in the HBT-EP tokamak. Several digital algo-
rithms have been tested experimentally, and phase-accurate control over a wide bandwidth
has been demonstrated. Using optimized magnetic sensors and control coils, the ampli-
tude of wall stabilized kink mode have been suppressed for plasmas near the ideal wall
limit. Fig. 6 illustrates feedback performance for two different high-gain transfer functions
of the digital controller. For each control algorithm, the phase between the controlling flux
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and the measured n = 1 perturbed poloidal field was gradually incremented over 360 deg.
As the control phase changes, the RWM can be suppressed or amplified, and the change
in the rate of toroidal mode rotation illustrates the importance of proper compensation.

5. Summary

Fundamental theory, experimental observations, and modeling of the resistive wall mode
(RWM) demonstrate how the complex interactions between a dominate resonant mode
and the currents flowing in external conductors can be effectively modeled. The plasma
response to both quasi-static and rapid, “phase-flip” perturbations were measured and
compared with theory. For the class of discharges studied in HBT-EP, the torque param-
eter is large, ᾱ ∼ 1, corresponding to the “high dissipation” regime for RWM dynamics.
The time varying plasma response to a rapid step change in the external field error al-
lows for a nearly instantaneous measurement of the plasma’s kink stability properties
and approach to marginal stability. Additionally, the results from ongoing experiments
include (i) investigations of the effectiveness of optimized mode control feedback to sta-
bilize plasma near the ideal-wall stability limit, and (ii) the performance of high-speed
digital algorithms and dedicated FPGA processors for plasma feedback control.
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