Characterization of Radioactive Wastes

ZHANG Zhentao
China Institute of Atomic Energy
Contents

1. Waste Characterization for Classification
2. Waste Characterization for Treatment
3. Waste Characterization for Disposal
1. Waste Characterization for Classification

- **In-Drum Gamma Methods**
 - High Level Wastes
 - Low and Intermediate Wastes

- **In-Drum Neutron Methods**
 - α Wastes
 - Non α Wastes
1. Waste Characterization for Classification

Difficult-to-Measure Radionuclides

➢ Scale Factor Method for NPP wastes
 Ratio of DTM Radionuclide (e.g. \(^{90}\text{Sr},^{63}\text{Ni}\)) to ETM Radionuclide (e.g. \(^{137}\text{Cs},^{60}\text{Co}\))

➢ Direct Measure Technique

\[
\varepsilon^{(90\text{Sr})} = \frac{A_{\text{Brem}} - A_{\text{BG of Brem}}}{A_{\text{Sr}}}
\]

ROI: 15-290keV
2. Waste Characterization for Treatment

Radionuclide Distribution in Process Streams

- Gamma Spectrometer
- Alpha Spectrometer
- Scintillators

Plastic Scintillator for 90Sr
Radionuclide Spectrometers
2. Waste Characterization for Treatment

Sub-Process Streams Characterization

Fluidity of Cement Paste
Viscosity of Glass Melt
Homogeneity
2. Waste Characterization for Treatment

Characterization for the Wasteform

- Leaching Resistances
- Radiation Resistance
- Thermal Properties
- Mechanical Properties
3. Waste Characterization for Disposal

Fundamental Study in Lab

- Dynamic Mode
- Static Mode

US Unsaturated Disposal Test France Multi-Barrier TVA
3. Waste Characterization for Disposal

Pilot Facility For Simulating Repository

US Intermediate Facility

France Full Scale Facility
3. Waste Characterization for Disposal

Waste Disposal Behaviour in underground Lab

- Simulating the Underground Repository
 - Multi-barriers
 - Multi-parameters
- Measuring Waste Degradation Evolution
 - Leaching of Radionuclide
 - Alteration of Waste

SCK-CEN Facility for Glass Disposal
Thank you for Your Attention