Input and distribution of rice root-derived carbon in plant-soil-micro-ecological system following 14C continuous labeling

Tida Ge, Jinshui Wu, Phil Brookes
Institute of Subtropical Agriculture, CAS

23 – 27 July 2012, Vienna, Austria
Outline

- Background
- Objective
- Materials and methods
- Results
- Conclusion
Background (1)

- Photosynthetic C is an important component in the C cycling of atmosphere-plant-soil system, and the main source of soil organic C

Giardina et al. (2002)
The estimated total contribution of photosynthates to MBC amounted to 91 mg C plant\(^{-1}\), corresponding to 28% of total MBC at the end of the season or a 100% increase in MBC over the growing season (Lu 2002).

Only about 2%–5% of net plant C assimilation is retained in the soil (Hüsch et al., 2002).

Currently, little known about the new C input to soil C pools and its potential contribution to more stable soil C storage
Objective

- To understand the root-derived C dynamics in the soil-plant-microbial ecosystem
- To investigate the influence of rice-photosynthesized C inputs on changes in mineralization (i.e. priming effects) of the native SOC pool after rice harvest
Materials and methods

- **Crop**: Rice (Two-line hybrid rice *Peiyliangyou* 288)
- **Soils**: Four typical paddy soils (P1, P2, P3, P4)
- **14C tracing technique**: Generated through the reaction between 14C-Na_2CO_3 and HCl
- **Two principal treatments were set up:**
 - rice-planted paddy soil
 - unplanted paddy soil
- **Harvest time**: 80 d after 14C labeling
- **Indices analysis**
 - 14C-SOC, 14C-DOC, 14C-MBC
Experimental system

- 14C-CO$_2$ concentration: 270-350 ppm;
- relative humidity: 80%–90%
- day/night temperatures: 31 ± 1°C / 24 ± 1°C
- light intensity: 12 h, 500 mmol photons m$^{-2}$ s$^{-1}$ PAR
Amounts of rice biomass in four different paddy soils after continuous labelling for 80 days.

<table>
<thead>
<tr>
<th>Soil</th>
<th>Shoot biomass</th>
<th>Root biomass</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>5.42 a</td>
<td>c</td>
</tr>
<tr>
<td>P2</td>
<td>5.62 ab</td>
<td>b</td>
</tr>
<tr>
<td>P3</td>
<td>5.55ab</td>
<td>a</td>
</tr>
<tr>
<td>P4</td>
<td>4.09b</td>
<td>c</td>
</tr>
</tbody>
</table>

14C-SOC / rice biomass C (%)
Contribution of photosynthesized C to SOC in different soils

SOC¹⁴ (mg kg⁻¹)

- **Rice-planted soil**
- **Non-planted soil**

Soils:
- P1
- P2
- P3
- P4
Contribution of photosynthesized C to MBC in different soils

- **Rice-planted soil**
- **Non-planted soil**

<table>
<thead>
<tr>
<th>Soils</th>
<th>P1</th>
<th>P2</th>
<th>P3</th>
<th>P4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>c</td>
<td>a</td>
<td>ab</td>
<td>b</td>
</tr>
<tr>
<td>MBC14 (mg kg$^{-1}$)</td>
<td>10</td>
<td>40</td>
<td>30</td>
<td>30</td>
</tr>
</tbody>
</table>

The letter codes (a, b, c) indicate significant differences among treatments.
Contribution of photosynthesized C to DOC in different soils

Rice-planted soil

Non-planted soil

Soils

<table>
<thead>
<tr>
<th>Soil</th>
<th>DOC14 (mg kg-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>d</td>
</tr>
<tr>
<td>P2</td>
<td>c</td>
</tr>
<tr>
<td>P3</td>
<td>a</td>
</tr>
<tr>
<td>P4</td>
<td>b</td>
</tr>
</tbody>
</table>

Legend

- Rice-planted soil
- Non-planted soil
SOC14 VS rice root biomass, MBC14

- SOC14 (mg kg$^{-1}$) vs. Root biomass (g plot$^{-1}$): $y=0.005x+0.004$ ($r=0.975^{**}$)

- MBC14 (mg kg$^{-1}$) vs. Root biomass (g plot$^{-1}$): $y=0.107x+0.767$ ($r=0.935^{**}$)

- MBC14 vs. SOC14 (mg kg$^{-1}$)
A simple model of the contribution of rice photosynthesized carbon to DOC and MBC in a flooded rice system.

14C-CO2 → 4-6% → 14C-SOC → 2-4% → 14C-DOC → 9-18% → 14C-MBC → 78-80% → Other component
new and native SOC mineralization: 25°C, 100% air humidity soil incubation

5, 10, 20, 30, 40, 60, 80 and 100 d of incubation analyze 14C-CO$_2$ and CO$_2$
Cumulative CO$_2$ efflux derived from new C in rice-planted, non-planted soils

Graphs:
- **Rice-planted soil**
- **Non-planted soils**
 - P1
 - P2
 - P3
 - P4

Axes:
- **Incubation time (d)**
- **14CO$_2$ Evolution (mg kg$^{-1}$)**
The amount of CO$_2$ derived from native and new SOC in rice-planted and non-planted paddy soils
Conclusion

- At 80-d uniform labeling, organic 14C in rice-planted soils 4× more than in non-planted soils.

- At 80-d of labeling, SOC14 concentration was positively correlated with biomass C14.

- The distribution and transformation of the photosynthesized C had greater influence on the dynamics of DOC and MBC than that of SOC.

- Less native SOC mineralization (i.e. a negative priming effect) found in some soils.

(most of this now published in Soil Biology & Biochemistry)
Acknowledgements

- National Natural Science Foundation of China (40901124), the Knowledge Innovation Program of CAS (KZCX3-SW-437)
- IAEA Grant
- Youth Innovation Promotion Association, CAS
Thank you for attention

Tida Ge
Mapoling of Changsha City, Hunan province, China
410125
Institute of Subtropical Agriculture (ISA), the Chinese Academy of Sciences (CAS)
Email: gtd@isa.ac.cn