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S1/2

» EX/S - Magnetic Confinement Experiments: Stability
— 47 papers
 EX/W - Magnetic Confinement Experiments: Wave—plasma
interactions, current drive & heating, energetic particles
— 58 papers

* EX/D - Magnetic Confinement Experiments: Plasma—material
interactions — divertors, limiters, SOL

— 50 papers

156 papers

Apologies: non exhaustive “issue driven” report

Write to for suggestions to be
included on the written summary
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Stability

* Issues
— ELM’s, RWM etc: occurrence — strength — understanding —
mitigation
— Disruption and runaway electrons
— Fast particles: AE’s etc.
— Real time control
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The ELM ISSUE

#79698 - 4.5MA
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ITER divertor will not

tolerate “classical” type 1

ELMs:
Extrapolated frequency to be
Increased by > 30 or elimination
altogether

16 :
Time [s] ELM «

see Nunes, EXC/P8-03 also f.. ...... . ”
F. Romanelli 23rd IAEA FEC, Daejeon, Korea ober 2010




Elm 1ssue

2 different approaches:

— Beat them: 2 “Quiescent” regimes proposed for ITER (see S1/1)
 Alcator I-mode
« DIII-D quiescent modes

« Both with good confinement without ELMs
— Seem ideal but scaling to ITER?

— Join them:
 Several methods of mitigation and pacing



ELM mitigation by perturbations

A wealth of results from JET, Mast, NSTX, JT 60 ...

» Density perturbations in the pedestal
— Pellets: OK but only Fx5 =¥ reliability?

Fast particles
— Mitigation by fast particle driven RWM (JT60-U)

» Pacing with vertical jogs

— OK but only F ~ x 5; AC losses 1n supraconductors?

Using 3D magnetic perturbations

— Total stabilisation “proof of existence” from DIII-D with
RMP n=3 m~11 coils, new results from JET (n=1,2; m?)
and Mast but only partial stabilisation

— Reliable pacing with fast pulses of n=3 coils m? (NSTX)
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ELM mitigation by perturbations

« Mitigation may well come with a price to pay

* On confinement quality

* On threshold power (observed on RMP, n=3)

e On rotation breaking with non resonant fields
(disruption)

* See also the new concern (R. Buttery) on the error
field threshold to trigger 2/1 modes falls with
proximity to tearing 3 limit
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Understanding:

 Pellet pacing
— Well accounted for by MHD simulations (Huysman)

» Effect magnetic perturbations

— See excellent review by J. Callen at this conference

— The RMP case of DIII-D is driven by ergodisation of
magnetic fields in the pedestal. Right value of Chirikov
parameter but uncertainty on the plasma response =»
predictability??

« Requires good alignment (range of g possible with optimized
coil as proposed for ITER)

— Understanding of non resonant case? Resonance with
precursor?

= A strong case for pellet and internal coils but more work needed

JJ S1/2 FEC 2010



Energetic particle driven Wall Mode triggers ELM with

Matsunaga, EXS/5-3 (Thu/PM)

decreasing ELM amplitude

- EWM (Energetic particle driven Wall Mode):
destabilized at p,>p,""al, around =2 (p~0.6)

- EWM-triggered ELM: fg iy 7 and AWgia\

— ELM loss by half

- Divertor diagnostics: oscillations in synchronization with EWM
— lon loss — increase in Vpgq,e — ELM trigger

Effect of fast-ion component on ELM stability
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Disruption and Runaways

e ITER requirements for full scale operation:

— 90% of plasma radiation during the thermal quench

— <1 MA of runaway electrons

A

Plasma current

Plasma energy

RE current
RE

»
>

t

Events during plasma disruption. S. Putvinski

Collisional RE dissipation requires exceeding a critical density given by
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Rosembluth-Putvinski theory. It is very high for ITER ~ 10%°m-3
Also MHD is not likely to deconfine REs in ITER (1zzo)
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Disruption and RE (2)

e New results from Asdex-U, Tore Supra, DIII-D, C-mod, JET

— Massive gas injection with mixtures of He, Ar
« >50% radiated; <2% of RE left; forces on VV small
« Uniform radiation would required 4 systems with large orifices

— J. Wesley suggests maintaining the equilibrium of the RE beam to dissipate
it slowly. Multiple injection suggested by Putvinsky.

=>» Good progress but ITER radiation requirements not met yet

* And a much broader basis:
— Diffusive model for halo width growth during VDE

— Survey of JET disruption occurred 1n the last 10 years (T. Hender): causes,
forces asymmetries and extrapolation to ITER (40MN). Rather good news
but also a warning: “Runaway electrons are found to be lost to small
wetted areas determined by small tile misalignments/irregularities”

JJ S1/2 FEC 2010
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Disruption mitigation by massive gas injection

halo currents / sideways forces
Ar/D, injection during VDE

Normalised sideways impulse (ms) ®

s ol Jeq 8Mdt/ 21ga
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M. Lehnen

Forces

* halo currents reduced by factor of 4

» sideways forces reduced by factor of 10

 both achieved for current quench times above
the ITER eddy current limit

Heat loads

* more than 50% of thermal energy is radiated

» strong radiation peaking during pre-TQ
(conservative estimate suggest that 4 injection
ports are needed to prevent from Be melting
by local radiation in ITER)

Runaways

» safely avoided for Ar or Ne mixed with 90% D,
 reached only 2 % of critical density for avalanche
suppression, which is essential for ITER

* pure Ar or Ne injection generates runaways



Fast particle Issues

* Requirements: avoid excessive losses of fast particles potentially
dangerous for the machine and for the performance.

— Sources: fusion born a’s or heating systems
— Drive: microturbulence, sawteeth, Alfvén eigenmodes
— ITER reference scenario estimated safe; advanced scenarios, in
particular reverse shear are in danger.
e Results:
— New powerful diagnostics (e. g. FIDA, HIBP, ..)

— Results from DIII-D, LHD, HL-2A

« 1st observation of e-BAE
« Detailed results on GAM, Sawteeth, TAE, KAE

* Need for integrated predictions for ITER and reactor
— Requires the nonlinear superposition of many modes
— An urgent task for ITER!

JI'S1/2 FEC 2010 13



Energetic lon Losses are Observed at Frequencies Corresponding
to Both Toroidal and Reversed-Shear Alfvén Eigenmodes

FILD Autopower, 142111

Majority of the loss activity
appears at TAE frequencies;

clear observation of some
RSAE activity

TAE

(Vautopower)

Frequency [kHz]

Shot 142111, 525 ms

\ Time [ms]
NB Prompt Losses N el © Neutral beam prompt losses are accounted
Losses for in analysis

* Losses at the TAE frequency are observed in
a narrow region of phase-space

— pitch angle: 42° < a < 48° (% 5°)

— energy corresponds to full energy of
neutral beam injection: 80 keV

@’g D.C. Pace, |IAEA, Daejeon, Korea - October 13, 2010
AL FUS!\EM‘I' FAC
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Geodesic acoustic mode (GAM): a branch of zonal flow

1
=)

Turbulence-driven GAM

720 725
tima (ms)

Nonlinear coupling of micro-turbulence P Nl

B

¢, V,,n,

Energetic-particle driven GAM
Velocity space anisotropy
in the energetic particle distribution function.

Global GAM (GGAM) -MHD-

(JET: Berk H et al 2006 Nucl. Fusion 46, 5888,
Boswell CJ et al 2006 Phys. Lett. A, 358, 154)

Asuau)Bo

Energetic-particle-induced GAM (EGAM) -Kinetic-
(DINl-D:Nazikian R et al 2008, Phys. Rev. Left. 101, 185001.
Fu G 2008, Phys. Rev. Lett. 101, 185002.)

(LHD: Toi K et al, 22nd IAEA FEC, EX_P8-4) R B
B,n,T,

E:> In this study, Q; is measured locally and directly
using a heavy ion beam probe in the LHD plasmas.




Sensors, actuators, real time control

e |ssue:

— Simultaneously control profiles, stabilize an increasing number
of modes and maintain suitable plasma regime

* Progress:
— Mult1 actuator MHD control; Extrap, RFX, MST + many

— Example of diagnostics: 2D Te ECE 1imaging systems: 400
channels on KSTAR, results from yesterday (Park)

— NTM control with ECRH: 7 real time controllable launchers on
TCV + ...

— ““State Space controller” for RWM stabilisation (Sabbagh)
— Profile control of Advanced Tokamak (Moreau)

JJ S1/2 FEC 2010 16
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MHD feedback control

RFX-mod and EXTRAP T2R are equipped with a most
comprehensive system of active coils

|

N,

RFX-mod
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BOLZONELLA EXS/P5-01

RWM amplitude

RWM phase
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THE UNIVERSITY OF TOKYD

"-r-"

REAL-TIME CONTROL OF ADVANCED TOKAMAK SCENARIOS D. Moreau

« Control-oriented response models for profile control obtained from
actuator modulation experiments (ITPA-10OS Joint exp. 6.1)

e Shown on JET (2008) and now on JT-60U and DIII-D (e.g. ¥ + Vtor + Ti)

 The missing link for closed-loop magneto-kinetic control on advanced
scenarios and control simulations on ITER
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L imiter and divertor issues

 Snow flake divertor

— An idea of Ryutov first tried on TCV = increased flux
expansion, low frequency ELM’s

— Upgrades foreseen for NXTX and MAST

* Low recycling with Lithium with improved
performance
— Liquid lithium limiter on FTU (ETG stabilisation)
— NSTX, TJ-II
— Compatibility with impurity seeding

JJ S1/2 FEC 2010
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The “snowflake” divertor
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W pollution, dust, gas inventory

* Tungsten i1ssue

— W coated walls (Asdex-U)

* Dominant W source is during ELMs but ELM flushing and divertor
screening are effective. For ITER OK if F; >5Hz

* N2 seeding = 70% radiation, improved confinement, AZ moderate
» JET tests in preparation

— W splashes if melted (Coenen, Textor) =» reduced power handling,
core contamination

e Dust transport in JT60-U

— Low penetration in the plasma but hides under the divertor!

* @Gas inventory (C walls 1 DIII-D)
— No retention during the H phase, 20% during start-up (L phase)
— Good recovery using thermo oxidation (20% O2; 80%)
=» Reconcile this with other studies, well conditioned graphite?

JJ S1/2 FEC 2010
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Dust transport during discharges and dust deposition

in vacuum vessel have been clarified.

- Dust transport measurement by fast camera

- Dust distribution measurement by Mie scattering using YAG laser

- Dust ejection/transport from divertor and outer baffle tiles
- Distribution peak in far-SOL
= No significant penetration into far- near-

edge

Asakura,
EXD/P3-02
(Wed/AM)

core
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Heating, wave coupling
See S/2-2 for ITER hardware and heating mix (Wagner)

« ECRH
— Disruption avoidance at high Beta N + modelling (Esposito)

« LHCD:

— PAM launcher =» match resiliency, active cooling, remote
coupling (Tore-Supra) =» suitable for ITER long pulse

— Plans for SSO 1n EAST, KSTAR, HL etc.
« [CRH

— Use of Elm resiliency schemes and compact antenna (JET)

— Impurities with high Z walls =» contradictory results from
Asdex-U and Alcator-C mod. Sources or confinement??

— Routine wall cleaning with field on (KSTAR, EAST, TS)
— Large core rotation with MCFD (mode conversion flow drive)

JJ S1/2 FEC 2010
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" EFJp4  ICRH ITER relevanfiSysts
Pulse Mo 78068
Bt=2.6T/ Ip=2.5T Mailloux

s 0f A Three different ICRH matching
= . system tested on JET in 2008-09
o
| | ' | - ITER-like antenna
ol
§ °T - External Conjugate T between
T antennas C & D
i J—T 2 7 T - 3dB hybrid couplers between
1met) antennas A& B

NBI vs. high ICRF fraction H-modes =

8.4MW coupled on Type-| ELMs
~ 3MW from 3dBs

~ 4 MW from ECT
~ 1.4MW from ILA

see Durodié, EXW/P7-04, Sartori, EXC/P8-12

F. Romanelli 23rd IAEA FEC, Daejeon, Korea



rrm Characterization of the properties of the -Eﬁﬁitiiri‘fEEA
& PAM LHCD launcher G

« New launcher built in the frame of the LHCD system upgrade

- Based on the Passive Active Multijunction (PAM) concept
created for providing efficient cooling of the launcher in the ITER
environment (neutron load)

HER - ITER requirements:

| — Efficient cooling
l“LliL.LUHLJ.w — Long distance coupling
LU L _ — ELMs resilience

| H% :' — Power density 33 MWm-2

_ at 5 GHz
e — Long pulse capability




ICRF Mode Conversion Flow Drive

Demonstrated on C-Mod

Yijun Lin C-mod

* Strong toroidal flow with significant flow shear

« Favorable scaling with power and plasma current

* Alsoin JET (~ %2 NBI rotation) T. Tala 06
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Concluding remarks

* Impressive depth of physics and results
— Diagnostics — experimental procedures — theoretical basis
— Integrated physics multimode approach

* Revival of runaway, disruption and material studies
— Important and urgent for ITER

* 3 D magnetic field perturbations
— Wealth of results and good prospect for more
— A “‘star” in this summary but not a mature subject yet
=» requires more studies

Finally, lots of thanks to our host and IAEA for a great conference
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