In-situ radionuclide quantitative characterization in aquatic ecosystems using the KATERINA detector

C. Tsabaris, D.L. Patiris, G. Eleftheriou, M. Kokkoris, R. Vlastou

Hellenic Centre for Marine Research, Institute of Oceanography, Attica, Greece

National Technical University of Athens, Faculty of Applied Mathematics and Physics, Athens, Greece
Developed and constructed at
Hellenic Centre for Marine Research (HCMR)

Calibrations performed at
National Technical University of Athens (NTUA)

Simulations performed in collaboration with NTUA
Outline

- Status of measuring techniques for marine radioactivity
- The KATERINA system
- Laboratory facilities – calibrations
- Monte Carlo Simulations (GEANT4 code)
- Real Time operation (POSEIDON network)
- Field measurements
- Comparison
- Future Plans
Status of Measuring Techniques

- **Lab based Technique**
 Traditional Sampling and Laboratory Analysis by using HpGe detectors.
 The method is applied at HCMR for NORM and 137Cs analysis.

- **In-Situ Monitoring Technique (option to Real-Time)**
 Detectors: HPGe in-situ (high consumption) and NaI(\sim1-2W)
Radioprotection and Oceanographic applications (Geophysical and Meteorological)

Advantages in radioprotection:
1) Screening of Contaminated areas concerning facilities which pollute the marine environment
2) Mapping of large areas to estimate levels and distribution of N/A radionuclides
3) Information on the nature of radioactive substances contained in underwater objects
4) Continuous monitoring and Real-Time data transmission provides early warning

In situ Applications:
Radon daughters measurements on Submarine Groundwater Discharge
Radon daughters measurements near fault region
Radon daughters variations on rainfall
Seabed mapping
^{40}K and ^{137}Cs decay schemes

They belong to the first group at the periodic table

They are monoenergetic gamma emitters
The underwater spectrometer KATERINA patented INT.CL: G01T 7/00

Specifications
• Crystal: 3x3” NaI
• Consumption ~ 1.2 W (100mA)
• Resolution at 662keV: <6%
• Variable Energy Range
• Adjustable spectroscopy: max of 2048 channels
• Operating Temperature: 0-50°C.
• Correction for voltage drifts.
• Adjustable HV voltage
• Adjustable amplifier gain, PZC and shaping time.
• Autonomy (without PC connect)
• Option for Real Time (software independent)
Hardware

- **Analog Nuclear Electronics** (Pre-amplifier, Shaping Amplifier + Gain + Base Line Restoration + Pole Zero Cancellation + shaping time).

- **Digital Electronics** (Multichannel Analyzer + successive approximation ADC + RS232 and USB Interface).
Experimental set up (lab)

- Point sources calibration (15cm and 25 cm)
- Without housing (first figure)
- With housing (second figure)
Comparison for 137Cs (with and without the housing)

- Similar energy resolution
- Similar Compton tail
- Variation of the total efficiency
- Peak to total ratio variation
Marine Calibration Sources

Gamma ray sources

<table>
<thead>
<tr>
<th>Source</th>
<th>Energy (keV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40K</td>
<td>1461</td>
</tr>
<tr>
<td>137Cs</td>
<td>661</td>
</tr>
<tr>
<td>99mTc</td>
<td>141</td>
</tr>
<tr>
<td>111In</td>
<td>162, 246</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Half Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.3x10⁹ years</td>
</tr>
<tr>
<td>30.17 years</td>
</tr>
<tr>
<td>6 hours</td>
</tr>
<tr>
<td>67.9 hours</td>
</tr>
</tbody>
</table>
Laboratory facility at NTUA

- Tank with volume of 5.5m³
- Pump for circulation of the water
- Hardware and software for the acquisition
- The SPECTRG software package for the analysis of the measured data (NCSR “Demokritos”)
Calibration spectra

Energy (keV)

Counts

- Cs-137 K-40 with background
- Cs-137 K-40 without background
Continued (\(^{99}\text{mTc}\))
Resolution calibration

Measurements

\[f^2 = -669.48 + 4.55E \]
Comparison with DUS system

![Graph showing comparison of counts vs. energy for ^{137}Cs and ^{40}K from D.U.S and K-A-TE-RINA.](image-url)
Comparison with RADAM system (\(^{99m}\text{Tc}\))
Intercalibration exercises (in-situ and lab)

Broad Energy Germanium Detector

<table>
<thead>
<tr>
<th></th>
<th>^{214}Pb (Bq/l)</th>
<th>^{214}Bi (Bq/l)</th>
<th>^{208}Tl (Bq/l)</th>
<th>^{137}Cs (Bq/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>in-situ</td>
<td>1.7±0.2</td>
<td>1.9±0.1</td>
<td>0.12±0.01</td>
<td>0.012±0.003</td>
</tr>
<tr>
<td>lab</td>
<td>1.9±0.2</td>
<td>2.0±0.2</td>
<td>0.10±0.02</td>
<td>0.010±0.001</td>
</tr>
</tbody>
</table>
Monte Carlo Simulation using GEANT4

Taking into account the typical interactions in the water, in the material of the housing and in the NaI crystal.

Interactions
- Compton scattering
- Photoelectric
- Pair production
Effective volume of gamma rays in water
Simulated values of V_{eff}

Photopeak counts versus volume, input: 2,000,000 gammas/m3
Simulated 40K spectrum

40K
Measuring Time: 3 days

- **measured data**
- simulation A (no scattering in the POM housing)
- simulation B (taking into account the scattering in the POM housing)
Simulated spectrum of 111In
Efficiency simulation with GEANT4

1) Running the code with constant number of gammas/m3 (~2,000,000 gammas/m3)

2) Volume values are above the V_{eff}

$$
\varepsilon_m = \varepsilon_{ph} V_{eff} = \frac{N_{photopeak}}{N_{total} / V}
$$
Simulated Marine efficiency
published in Env. Mon. & Assessment
Natural and anthropogenic R/N in Butrint lagoon, Albania
Seabed sediment characterization

\[F = -0.048A_{Ra} + 0.24A_{Tb} + 0.65A_{Co} - 0.0020A_K - 3.6 \]
Thermaikos Gulf (North Greece)
Thermaikos Gulf (surficial 137Cs variation)
Height: 7.9 m
Width: 1.75 m
Weight: 900 kgr
Energy: Solar panels + batteries
Communication: Imarsat C, GSM every 3 hours
Field measurements (Aquatic measurements) published in Applied Radiation and Isotopes

Dust load over Mediterranean, forecast image from the POSEIDON system.
Application in Monaco: Groundwater fluxes on Submarine discharges

Results:
- Measured activity: 1450 Bq/m³
- Activity at open sea: 3-5 Bq/m³

Application in Monaco: Groundwater fluxes on Submarine discharges

Flow rate: 6 m³/min

\[
y = -0.5102x + 21.236
\]

\[
R^2 = 0.3675
\]
Third Deployment using an ROV in Stoupa

published in Sea Technology

Minimum flow rate: 16m³/min
Results (Stoupa experiment)

^{222}Rn results:
- averaged activity: 1700 Bq/m3
- activity at open sea: 3.5 Bq/m3
System Improvements

Software for automated analysis of the acquired gamma ray spectra

Installing the system in a network of floating measuring systems and platforms

Upgrade for depths up to 6000m

Marine system for geophysical and radioprotection purposes

(Warning/Alarm)
Future Plans

- GEANT4 and MCNP5 simulations on sediment spectra for efficiency estimation.
- Include special hardware for user-independent automatic gamma ray spectra analysis in order to inform directly the responsible operational centre.
- Applying the system as a dosimeter in the water as well as in the sediment for NORM and 137Cs.
- Applying the system in a network for monitoring radon on submarine faults (ESONET project in Marmara Sea).
- Seabed characterization at specific NORM sites with increased activity concentration (like fertilizer industry) (test in Cyprus).
- Real-Time Monitoring radioactivity in terrestrial environment as well as in air-sea interaction environment.
Test deployment in Stoupa (South Peloponnesus)