Recent Advances in Handheld XRF for Site Remediation

John I.H. Patterson
IEC - USA
Bruker Elemental
Kennewick Washington
John.Patterson@Bruker-Elemental.net
International Electrotechnical Commission
Creator of international standards for
electrotechnical equipment

TC45 – Nuclear Instrumentation

PT 62495 – Portable X-ray Fluorescence
Analysis Equipment Utilizing a Miniature
X-ray Tube
Outline

• XRF Theory
• EPA 6200
• Hardware Advances
 • Miniature X-ray tubes
 • Silicon Detectors
 • GPS
• Software Advances
 • Mapping
 • User Empirical Calibrations
 • Type Standardization
• Limits of Detection
Characteristic x-ray production

K shell x-rays analyzed up to about 30 kV AN ~30;
ex. Ti (Ka @ 4.5 kV), Ag (22.2 kV), Sb (26.3 kV)

L shell x-rays analyzed for elements above AN ~30
ex. Hf (Ka @ 55.8, La @ 7.9); Pb (Ka 75.0, La 10.5)
XRF Rules

1. Energy of X-ray tells you what element is present

2. Number of X-rays tells you how much is present

3. Measurement precision increases with increased number of counts

4. Energy decreases with atomic number (Z)

5. Absorption increases with decreasing energy
EPA 6200

Field work 1997
Published 1998
Updated 2007

Covers
Radioactive Sources
Proportional counters
Early solid state detectors

<table>
<thead>
<tr>
<th>Ground Sample LOD</th>
<th>EPA 6200 LOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>mg/Kg</td>
<td>mg/Kg</td>
</tr>
<tr>
<td>Arsenic (As)</td>
<td>40</td>
</tr>
<tr>
<td>Cadmium (Cd)</td>
<td>100</td>
</tr>
<tr>
<td>Chromium (Cr)</td>
<td>150</td>
</tr>
<tr>
<td>Lead (Pb)</td>
<td>20</td>
</tr>
<tr>
<td>Mercury (Hg)</td>
<td>30</td>
</tr>
<tr>
<td>Silver (Ag)</td>
<td>70</td>
</tr>
<tr>
<td>Strontium (Sr)</td>
<td>10</td>
</tr>
</tbody>
</table>
Miniature X-ray Tubes

Up to 50 kV
Completely Adjustable
No Radioactive Material
Weight ~10-15 grams
SiPIN Detector

Detector capacitance increases with increasing area

Detector resolution decreases with increasing area
Silicon Drift Detector

SDD
- Integrated drift structure results in electron capture at center electrode
- Small contact means low capacitance
- Thin entrance window

SDD Offers
- Improved Resolution
- High Count Rate
- Low Z sensitivity
SDD Resolution

Comparison XFlash® / other SDD

Typical energy resolution at Mn Kα vs. input count rate

![Graph showing FWHM vs. input count rate for XFlash® (10 mm²) and Other SDD (10 mm²).](image-url)
Results of SDD

High Count rate means better precision in a given counting time

Better resolution means better signal to noise thus further improving the precisions

Resolution is especially important at low Z where neighboring peaks are ~250 eV apart
Transmission of 1 cm Air Path

<table>
<thead>
<tr>
<th>Element</th>
<th>Energy</th>
<th>Transmission</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mg</td>
<td>1.3</td>
<td>11.9%</td>
</tr>
<tr>
<td>Al</td>
<td>1.5</td>
<td>24.0%</td>
</tr>
<tr>
<td>Si</td>
<td>1.7</td>
<td>36.6%</td>
</tr>
<tr>
<td>P</td>
<td>2.0</td>
<td>53.2%</td>
</tr>
<tr>
<td>S</td>
<td>2.3</td>
<td>65.5%</td>
</tr>
</tbody>
</table>

N1:5620.42C:0605Ar:0094 Pressure=760, Path=1 cm
Careful Design for Low Z Detection

Thin Detector window

Thin Be window

Minimize distance between sample and detector

![Graph showing transmittance across different elements]
Low Z Spectrum

Al @ 7.5%; Si @ 29.7%; K @ 2.0%
Low Z Detection

SiPIN Detectors
- Low Z limit ~Ti (22)
- Some Detection at Ca (20)

SDD
- Low Z limit ~Si (14)
- Some Detection as Mg (12)

<table>
<thead>
<tr>
<th>AN</th>
<th>Element</th>
<th>LOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Mg</td>
<td>6600</td>
</tr>
<tr>
<td>13</td>
<td>Al</td>
<td>1050</td>
</tr>
<tr>
<td>14</td>
<td>Si</td>
<td>790</td>
</tr>
<tr>
<td>16</td>
<td>S</td>
<td>90</td>
</tr>
<tr>
<td>20</td>
<td>Ca</td>
<td>50</td>
</tr>
<tr>
<td>30</td>
<td>Zn</td>
<td>4</td>
</tr>
</tbody>
</table>
Low Z detection

Why does it matter?

- Allows selection of proper calibration
 Ex. if not Si matrix then substantial error will occur, the software can select a S based matrix or others

- Provides a more complete and accurate analysis
Typical SDD Analyzers

Typical Specifications:

- **Weight:** ~2 Kg
- **Batteries:** 4-8 hours
- **Voltage:** 40-50 kV
- **Input Count Rates:** 200 kcps
- **Heavy Metal LOD:** 2-10 mg/kg
- **Factory Supplied Calibration**
GPS is easily integrated to handheld XRF analyzer

Differential GPS can achieve spatial resolution of ~10 cm

Data can be exported with the assay data and all GPS coordinates to a mapping program
Sample Preparation

XRF is a surface measurement (depth of a few mm depending on Z).

Precision and accuracy will depend on the level of sample preparation.

Sample preparation required depends on your data quality objectives.

Quantitative results can be achieved in situ.

Almost lab grade quantitative can be achieved with on site sample preparation.
Sample Preparation

In situ measurements

- Remove any possible surface debris, stones, vegetation, and excess moisture from measurement area.

- Select a test area where soil particle-size is small and which looks homogeneous.

- Position the nose of the analyzer against the ground and start the measurement.

- After each measurement, clean the nose of the instrument with a soft cloth or tissue.

- Send 5 – 10% of samples to laboratory
Sample Preparation

On Site Sample Preparation (any part improves results)

- **Dry sample**
 - Absorbent paper
 - Dry overnight in shallow pan
 - Heat in oven until constant weight (care must be taken to prevent volatile compounds escape)

- **Grind/Sieve**
 - Sieve out large debris
 - Grind to 60 mesh (better 120 mesh)
 - Sieve

- **Prepare homogeneous sample in XRF cups.**
XRF Sample Cups and Holder

Sample Cups

Sample Bags

Sample Table and cover with Sample Cup

Analyzer in Stand
Site Specific Calibration

Empirical – based on standards which are representative of samples to be measured

Advantage –
Can exactly match the site conditions
For homogeneous samples give quantitative results

Disadvantage –
Requires understanding of XRF
Number of standards required
Time required to create calibration
Site Specific Calibration

Fundamental Parameters – based on measurement of a few standards, assumptions about the nature of the sample and theoretical understanding of XRF

Advantage -
 Ready “out of the box”

Disadvantage –
 Does not represent site conditions
 Probably gives “semi-quantitative” results
Site Specific Calibration

Factors which affect the calibration

- Matrix
- Particle size
- Density
- Moisture content

Typical FP calibration assumptions

- \(\text{SiO}_2 \)
- Small particle size (120 mesh)
- Very low moisture content
Type Standardization
“Calibration Correction”

Most differences between measured assay and actual are from difference between calibration assumption and reality

Most of these differences are linearly related to the concentration

Actual = Slope * Measured + Offset

Type standardization allows correction of measured data
Correction Calculation

<table>
<thead>
<tr>
<th>Element 1</th>
<th>Ni</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLOPE</td>
<td>0.6917</td>
</tr>
<tr>
<td>OFFSET</td>
<td>3.5507</td>
</tr>
<tr>
<td>CORR</td>
<td>99.7%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reference values</th>
<th>S1 Meas. Results</th>
<th>Adjusted S1 Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>3.55</td>
</tr>
<tr>
<td>100</td>
<td>131.1</td>
<td>94.24</td>
</tr>
<tr>
<td>180</td>
<td>219.45</td>
<td>155.35</td>
</tr>
<tr>
<td>500</td>
<td>792.17</td>
<td>551.53</td>
</tr>
<tr>
<td>1000</td>
<td>1404.84</td>
<td>975.33</td>
</tr>
</tbody>
</table>

\[y = 0.6917x + 3.5507 \]

\[R^2 = 0.9941 \]
What to Do for Site Specific Assay

Always try Type Standardization first
• Measure 5-10 well characterized samples
• Plot Actual vs. Measured
• If the result is a straight line plot with a correlation coefficient > 0.9 use Type Standardization

If not or if the element of interest in not in the basic calibration then Site Specific calibration will be required
Limit of Detection

How LOD is calculated

$$LOD = 3 \times \sqrt[3]{BKG \times SENS}$$

Where:

- **BKG** = average counts in the region of interest in counts/second
- **SENS** = slope of the calibration curve in ppm/cps
LOD Issues

LOD = Concentration

If sample at exactly LOD is measured a result will be calculated only about 50% of the time.

This does not indicate a concentration which can be measured.

Good for comparing one instrument (or calibration to another).
Limit of Quantification

Limit of Quantification

LOQ = 3 * LOD

Good indicator of concentration which can be measured accurately
LOD and LOQ

<table>
<thead>
<tr>
<th></th>
<th>EPA 6200 LOD (mg/Kg)</th>
<th>Current LOD (mg/Kg)</th>
<th>Current LOQ (mg/Kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic (As)</td>
<td>40</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>Cadmium (Cd)</td>
<td>100</td>
<td>21</td>
<td>63</td>
</tr>
<tr>
<td>Chromium (Cr)</td>
<td>150</td>
<td>40</td>
<td>120</td>
</tr>
<tr>
<td>Lead (Pb)</td>
<td>20</td>
<td>12</td>
<td>36</td>
</tr>
<tr>
<td>Mercury (Hg)</td>
<td>30</td>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>Silver (Ag)</td>
<td>70</td>
<td>8</td>
<td>24</td>
</tr>
<tr>
<td>Strontium (Sr)</td>
<td>10</td>
<td>4</td>
<td>12</td>
</tr>
</tbody>
</table>

Data is specifically for Bruker S1 TURBO^{SD} Representative of state of the art
Conclusions

In situ Handheld XRF

• Offers rapid measurement (1-2 minutes)

• Can easily transfer data along with GPS coordinates

• With proper calibration and sample preparation will give quantitative results

• Has LOQ for most heavy metals on the order of 10 to 25 mg/kg
Thank You For Your Attention