
"Possibilities and drawbacks of portable XRF instrumentation for characterization of metal contaminated sites"

Eva Marguí

I.Queralt, O.González-Fernández, A.Pitarch Laboratory of X-ray Analytical Applications (LARX) Institute of Earth Sciences "Jaume Almera", CSIC (Barcelona,Spain)

International Atomic Agency Technical Meeting on In-situ Methods for Characterization of Contaminated Sites 5-9 July 2010, IAEA Headquarters, Vienna, Austria

Laboratory of X-ray Analytical Applications (LARX)

- LARX was established in 1982
- It is located in the Institute of Earth Sciences "Jaume Almera", CSIC (Barcelona, Spain)
- Instrumentation:
 - X-ray diffraction spectrometry (XRD)
 - X-ray fluorescence spectrometry (XRF): EDXRF, WDXRF, TXRF
- Research projects: "Environmental issues"
 - Dispersal of metal pollutants at different environmental compartments (water, air, soils and biota)

• Collaborative links:

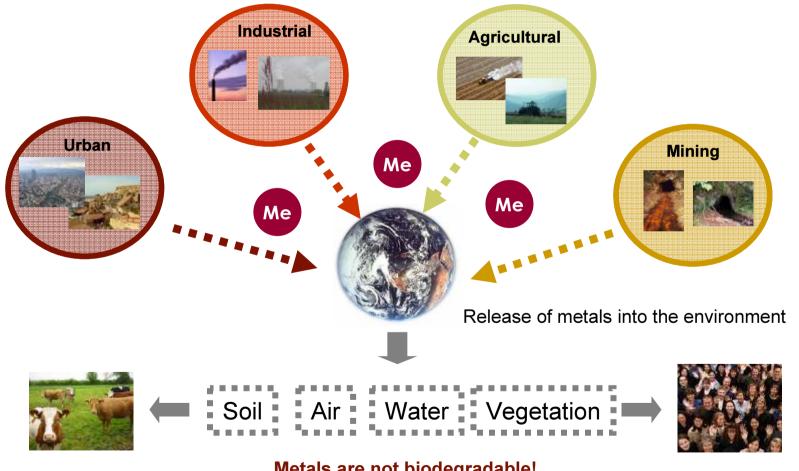
- CFAUL, Lisbon, Portugal
- INETI, Lisbon, Portugal
- MiTAC, Antwerp, Belgium
- Atominstitut TW, Vienna, Austria
- CENA, Sao Paulo, Brazil

Layout

- Aims of the presentation
- Introduction
 - Metal contamination / Legislation
 - Analytical techniques
 - Quality Assurance (QA)
- Application cases
 - As anomalies in floodplains (Handheld-EDXRF system)
 - Environmental impact of past-mining activities (portable EDXRF/TXRF systems)
 - Metal content in industrial waste waters effluents (portable EDXRF/TXRF systems)
- Conclusions

Aims of the presentation

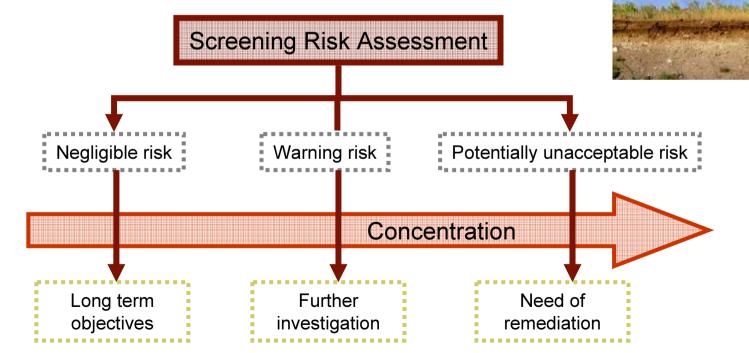
The Technical Meeting will review the current status, developments, and trends in (i) nuclear *in-situ* techniques for contaminated site characterization, and (ii) both nuclear and non-nuclear *in-situ* techniques used at nuclear-related sites, including nuclear fuel cycle facilities. In particular, applications to be addressed in the Technical Meeting could include those used at sites contaminated due to:


- Mineral exploration and mining (e.g. uranium mining)
- Nuclear power and nuclear processing facilities
- Industrial activities that produce Naturally Occurring Radioactive Materials (NORM)
- Industrial activities that produce metal contaminants (i.e. lead, zinc, copper, etc.)
- Military actions involving the utilization of nuclear material
- Accidents
- Terrorism actions

The following subjects of discussion are expected to be included in the programme:

- Selected *in-situ* applications at different kinds of contaminated sites
- Comparison of different techniques/methodologies for the characterization of contaminated sites
- Sampling approaches (i.e. choice of number and location of measurements)
- Mapping approaches of a contaminated site
- QC/QA of the in-situ analytical technique and interpretation of the results
- State of the art of the portable instrumentation for in-situ characterization. Current trends
- The role of the IAEA in the promotion and effective use of nuclear spectrometry instrumentation and of associated analytical methodologies for *in-situ* applications in developing Member States.

Metal contamination



Metals are not biodegradable! (Accumulation, environmental impact)

Legislation

Soil screen values (SVs)

- Are quality standards that are used to regulate land contamination
- Based on concentration thresholds (mg/kg soil-dry weight)
- Are derived on the basis of the:

Derivation of screening values based on various risk levels and different screening values applications (EUR 22805 EN-2007)

• Soil screen values (SVs) for metal and metalloids (mg/kg)

Negligible risk

	Belgium Wa	Czech Republic	Netherlands	Slovakia		
As	12	30	29	29		
Ba		600	160	500		
Be		5	0.04	3		
Cd	0.2	0.5	0.80	0.8		
Co		25	0.38	20		
Cr	34	130	100	130		
Cr(VI)	2.5					
Cu	14	70	36	36		
Hg	0.05	0.4	0.3	0.3		
Pb	25	80	85	85		
Mo		0.8	0.13	1		
Ni	24	60	35	35		
Sb			0.13			
v		180	42	120		
Zn	67	150	140	140		
	Warning risk					

Austria Belgium Belgium Czech Finland Germany Slovakia Denmark Sweden Fl* Wa Rep.

As	20	110	40	65	5	50	30	20	15
De				15			20		
Cd	2	6	3	10	1	20	5	0.5	1
Co				180	20		50		200
Cr	50		125	450	100	400	250	500	250
Cr(VI)			4.2					20	15
Cu	100	400	110	500	100		100	500	
Hg	2	15	9	2.5	0.5	20	2	1	5
Pb	100	700	195	250	60	400	150	40	300
Mo				50			40	5	
Ni	70	470	150	180	50	140	100	30	150
Sb	2			25	2				
Se							5		
Tİ	2							1	
v				340	100		200		200
Zn		1000	230	1500	200		500	500	700

Potentially unacceptable risk

	AUT	BE(F)*	BE(B)	BE(W)	CZE	FIN	ITA	LTU	NLD	POL	SVK	UK	DNK
As	50	110	110	300	70	50	20	10	55	22.5	50	20	20
Ba					1000			600	625	285	2000		
Be					20		2	10	30		30		
Cd	10	6	6	30	20	10	2	3	12	5.5	20	2	5
Co					300	100	20	30	240	45	300		
Cr	250		300	520	500	200	150	100	380	170	800	130	1000
Cu	600	400	400	290	600	150	120	100	190	100	500		1000
Hg	10	15	15	56	10	2	1	1.5	10	4	10	8	3
Pb	500	700	700	700	300	200	100	100	530	150	600	450	400
Мо					100			5	200	25	200		
Ni	140	470	470	300	250	100	120	75	210	75	500		30
Sb	5				40	10	10	10	15				
Se							3	5	100		20	35	
Sn					300		1	10	900	40	300		
Te									600				
Tİ	10						1		15				
v					450	150	90	150	250		500		
Zn		1000	1000	710	2500	250	150	300	720	325	3000		1000

*For new contaminants only

*For historical contaminants only

• Soil screen values (SVs) for metal and metalloids (mg/kg)

Negligible risk

	Belgium Wa	Czech Republic	Netherlands	Slovakia		
As	12	30	29	29		
Ba		600	160	500		
Be		5	0.04	3		
Cd	0.2	0.5	0.80	0.8		
Со		25	0.38	20		
Cr	34	130	100	130		
Cr(VI)	2.5					
Cu	14	70	36	36		
Hg	0.05	0.4	0.3	0.3		
Pb	25	80	85	85		
Mo		0.8	0.13	1		
Ni	24	60	35	35		
Sb			0.13			
v		180	42	120		
Zn	67	150	140	140		
Warning risk						

Austria Belgium Belgium Czech Finland Germany Slovakia Denmark Sweden

			•					
20	110	40	65	5	50	30	20	15
2	6	2		1	20		0.5	1
2	0	5		-	20		0.5	200
50		125			400		500	250
50		4.2	450	100	400	200	20	15
100	400	110	500	100		100	500	
2	15	9	2.5	0.5	20	2	1	5
100	700	195	250	60	400	150	40	300
			50			40	5	
70	470	150	180	50	140	100	30	150
2			25	2				
						5		
2							1	
			340	100		200		200
	1000	230	1500	200		500	500	700
	2 50 100 2 100 70 2	2 6 50 100 400 2 15 100 700 70 470 2 2 1000	2 6 3 50 125 4.2 100 400 110 2 15 9 100 700 195 70 470 150 2 2 1000 230	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

*For historical contaminants only

Potentially unacceptable risk

		AUT	BF(F)*	RF(R)	RF(W)	C7F	FTN	TTA	I TU	NI D	POI	SVK	ιк	DNK
	As	50	110	110	300	70	50	20	10	55	22.5	50	20	20
	Da					1000			000	020	200	2000		
	Be					20		2	10	30		30		
	Cd	10	6	6	30	20	10	2	3	12	5.5	20	2	5
	Co					300	100	20	30	240	45	300		
	Cr	250		300	520	500	200	150	100	380	170	800	130	1000
	Cu	600	400	400	290	600	150	120	100	190	100	500		1000
	Hg	10	15	15	56	10	2	1	1.5	10	4	10	8	3
	Pb	500	700	700	700	300	200	100	100	530	150	600	450	400
	Мо					100			5	200	25	200		
	Ni	140	470	470	300	250	100	120	75	210	75	500		30
	Sb	5				40	10	10	10	15				
	Se							3	5	100		20	35	
	Sn					300		1	10	900	40	300		
	Te									600				
	тΙ	10						1		15				
	v					450	150	90	150	250		500		
	Zn		1000	1000	710	2500	250	150	300	720	325	3000		1000
*Fc	or new c	ontamir	nants only	r										

Lack of harmonization among screening values used in EU Member States

THE HERACLES FRAMEWORK HUMAN AND ECOLOGICAL RISK ASSESSMENT FOR CONTAMINATED LAND IN EUROPEAN MEM-BER STATES Towards the development of common references

Legislation

• Water Framework Directive (2008/105/CE)

- Settlement of the limits of concentration in surface waters of:
 - 33 priority substances (Hg, Pb, Cd, Ni and its compounds)
 - 8 other pollutants

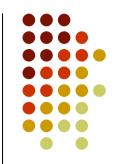
ANNEX I

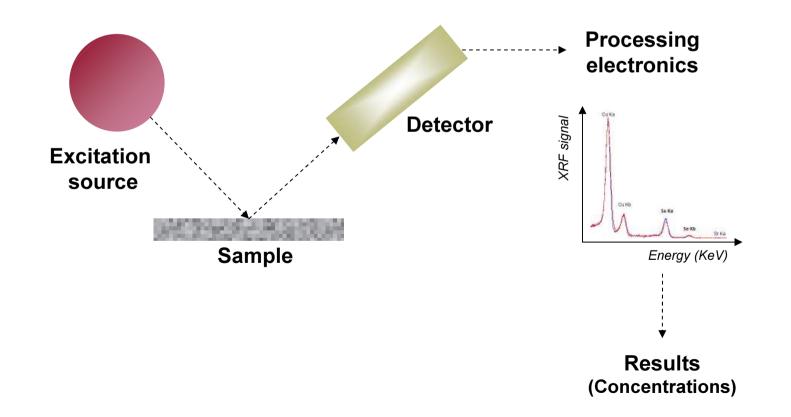
ENVIRONMENTAL	QUALITY	STANDARDS	FOR	PRIORITY	SUBSTANCES	AND	CERTAIN	OTHER
			POLLU	JTANTS				

No	Name of substance	CAS number	AA-EQS Inland surface waters	AA-EQS Other surface waters	MAC-EQS Inland surface waters	MAC-EQS Other surface waters
(6)	Cadmium and its compounds	7440-43-9	≤0.08 (Class 1)	0.2	≤0.45 (Class 1)	≤0.45 (Class 1)
			0.08 (Class 2)		0.45 (Class 2)	0.45 (Class 2)
			0.09 (Class 3)		0.6 (Class 3)	0.6 (Class 3)
			0.15 (Class 4)		0.9 (Class 4)	0.9 (Class 4)
			0.25 (Class 5)		1.5 (Class 5)	1.5 (Class 5)
(20)	Lead and its compounds	7439-92-1	7.2	7.2	not applicable	not applicable
(21)	Mercury and its compounds	7439-97-6	0.05	0.05	0.07	0.07
(23)	Niquel and its compounds	7440-02-0	20	20	not applicable	not applicable

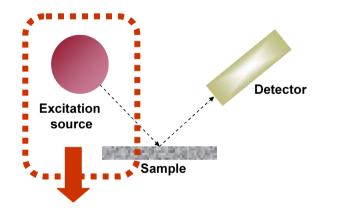
Concentrations are expressed as $\mu g/L$

AA: annual average value, MAC: maximum allowable concentration


Cd: Values are depending on the hardness of the water (Class 1: <40mg/L CaCO₃, Class 2: 40 to <50mg/L CaCO₃, Class 3: 50 to <100mg/L CaCO₃, Class 4: 100 to <200mg/L CaCO₃, Class 5: \geq 200mg/L CaCO₃

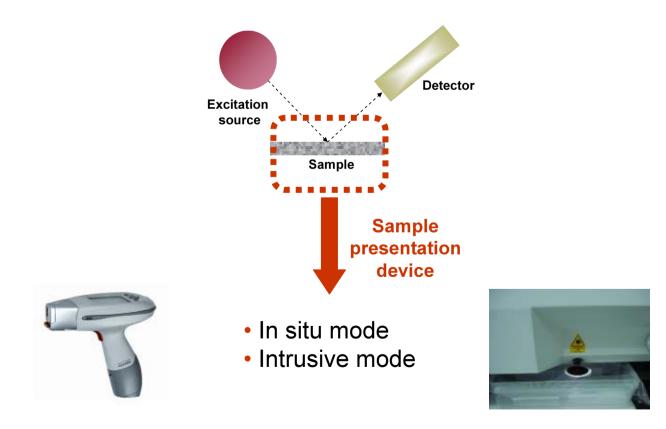

- Analytical techniques
 - Qualitative/Quantitative measurements of the amounts and distribution of metals in the contaminated areas

- Necessity of appropriate analytical methodologies
 - Multi-elemental capability
 - Simple sample preparation (Non-destructive)
 - Wide dynamic range
 - High throughput
 - Relatively low investment and operational costs
 - Adequate instrumental sensitivity, accuracy and precision of the obtained results (legislation)
- In-situ techniques?


- Analytical techniques
 - Field portable X-ray fluorescence spectrometry systems (FPXRF)

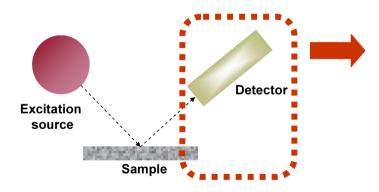
- Analytical techniques
 - Field portable X-ray fluorescence spectrometry systems (FPXRF)

Radioisotope sources:

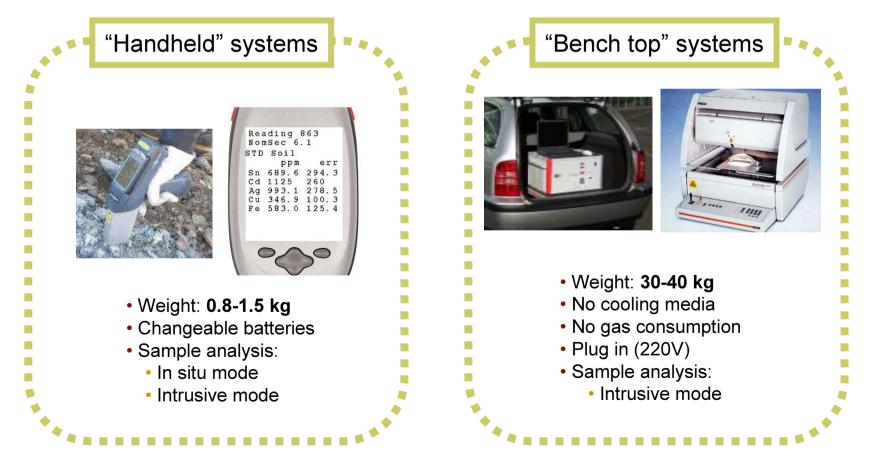


Isotope	Half-life	Useful radiation	E (keV)
Fe-55	2.7 years	Mn K X-rays	5.9
Co-57	270 days	Fe K X-rays	6.4
Cd-109	1.3 years	Ag K X-rays	22.2
Am-241	470 days	Np L X-rays	14-21
Cm-244	17.8 years	Pu L X-rays	14-22

- Radioisotope source
- Miniaturized X-ray tubes
- X-ray tubes:
 - Wider range of excitation energies
 - Higher X-ray flux
 - Use of <u>filters</u> to reduce the continuum radiation



- Analytical techniques
 - Field portable X-ray fluorescence spectrometry systems (FPXRF)


- Analytical techniques
 - Field portable X-ray fluorescence spectrometry systems (FPXRF)

- Gas flow proportional detector
- Scintillation detector
- Solid-state semiconductors
 - Best resolution
 - Cooling necessary
 - (liquid nitrogen or electronic cooling)

- Analytical techniques
 - Field portable X-ray fluorescence spectrometry systems (FPXRF): "Available Instrumentation"

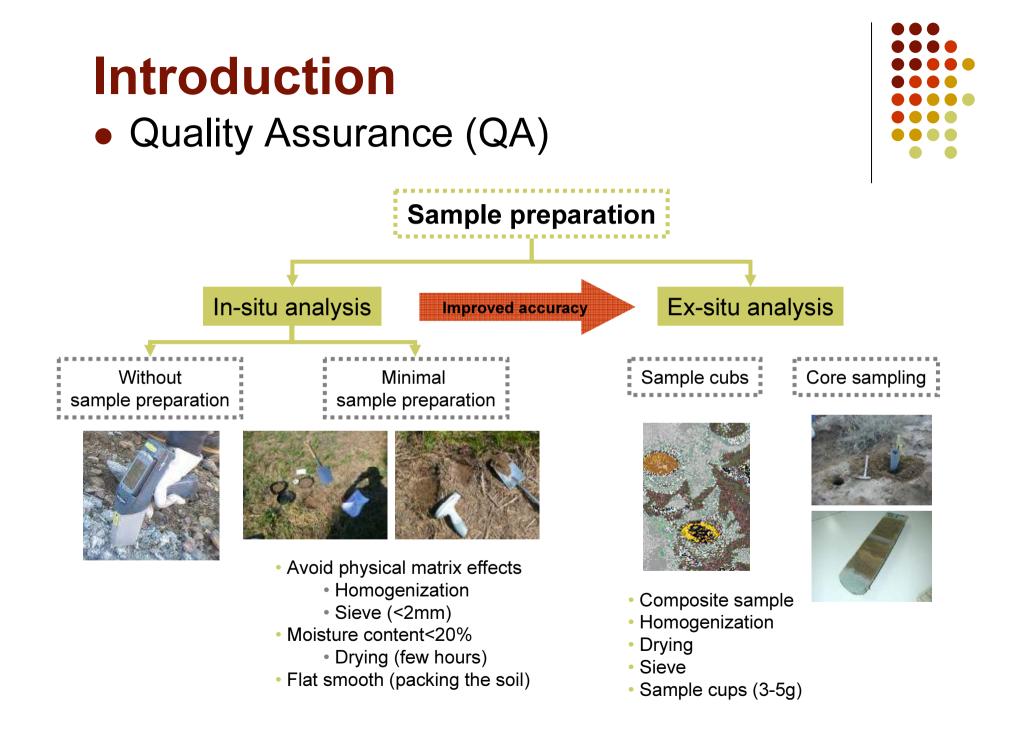
Layout

- Aims of the presentation
- Introduction
 - Metal contamination / Legislation
 - Analytical techniques
 - Quality Assurance (QA)
- Application cases
 - As anomalies in floodplains (Handheld-EDXRF system)
 - Environmental impact of past-mining activities (portable EDXRF/TXRF systems)
 - Metal content in industrial waste waters effluents (portable EDXRF/TXRF systems)
- Conclusions

• Quality Assurance (QA)

• Method 6200 US-EPA: "Field portable X-ray fluorescence spectrometry for the determination of elemental concentrations in soil and sediment" (revision 2007)

... Be aware of :


- Sample preparation
 - Calibration/Quantification
 - Limits of detection
 - QA/QC Considerations

• Quality Assurance (QA)

Sample preparation

- Considerations:
 - Representative samples
 - Sample moisture (<20%)
 - Sample placement and prove geometry
 - Physical matrix effects: particle size, heterogeneity, surface condition

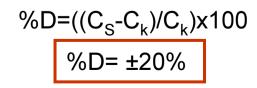
• Quality Assurance (QA)

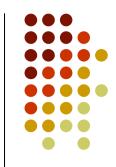
 Method 6200 US-EPA: "Field portable X-ray fluorescence spectrometry for the determination of elemental concentrations in soil and sediment" (revision 2007)

... Be aware of :

- Sample preparation
- Calibration/Quantification
- Limits of detection
- QA/QC Considerations

Quality Assurance (QA)


Calibration / Quantification


- Quantification depends on:
 - Detector resolution (spectral interferences)
 - Sample matrix effects (suitable calibration standards)
 - Sample preparation (particle size, homogeneity...)

Calibration methods (XRF signal \rightarrow Concentration)

- Fundamental parameters (standard less calibration)
- Empirical calibration (site-typical standards)
- Compton peak (normalization method)

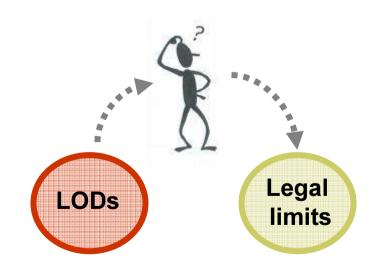
FPXRF results are quantitative when:

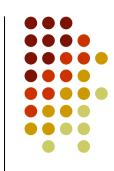
• Quality Assurance (QA)

• Method 6200 US-EPA: "Field portable X-ray fluorescence spectrometry for the determination of elemental concentrations in soil and sediment" (revision 2007)

... Be aware of :

- Sample preparation
- Calibration/Quantification
- Limits of detection
- QA/QC Considerations


• Quality Assurance (QA)


Limits of Detection (LODs)

- LODs depend on:
 - Instrumental characteristics (Excitation source, type of detector...)
 - Sample matrix
 - Element itself (fluorescent yield)
 - Measuring time

Element	Sand	matrix	Soil matrix			
Liement	60s	120s	60s	120s		
Mn	130	80	250	175		
Fe	100	75	250	175		
Со	75	50	200	150		
Ni	75	50	120	90		
Cu	75	50	100	60		

XLt 700 Series Analyzer (X-ray tube excitation)

• Quality Assurance (QA)

• Method 6200 US-EPA: "Field portable X-ray fluorescence spectrometry for the determination of elemental concentrations in soil and sediment" (revision 2007)

... Be aware of :

- Sample preparation
- Calibration/Quantification
- Limits of detection
- QA/QC Considerations

IntroductionQuality Assurance (QA)

QA/QC Considerations

- **Precision**: Assess variation in the reported values
 - Relative standard deviation (RSD)

RSD=(SD/Mean concentration)x100

RSD= ±20% (n=2)

• Total variation:

$$\sigma_{total}^{2} = \sigma_{sample}^{2} + \sigma_{sample}^{2} + \sigma_{sample}^{2} + \sigma_{sample}^{2} + \sigma_{analysis}^{2}$$

$$Preparation + \sigma_{analysis}^{2}$$

$$Preparation + \sigma_{analysis}^{2}$$

$$Preparation + \sigma_{analysis}^{2}$$

$$Preparation + \sigma_{analysis}^{2}$$

$$Preparation + \sigma_{analysis}^{2}$$

$$Preparation + \sigma_{analysis}^{2}$$

• Quality Assurance (QA)

QA/QC Considerations

- <u>Accuracy</u>:
 - Internal calibration \rightarrow Gain correction
 - Instrumental stability
 - Energy calibration
 - Calibration checks at several concentrations
 - Certified reference materials
 - Well characterized site samples

Comparability:

- Comparison field-method with laboratory data (in-situ / ex-situ comparison)
- Usually: 10% of total samples

• Quality Assurance (QA)

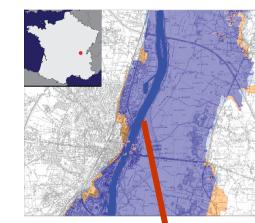
QA/QC Considerations

Data quality level	Requirements
	RSD>20%
Qualitative Screening (Q1)	R ² < 0.70
	Inferential statistics indicate two data sets are statistically different
	RSD<20%
Quantitative Screening (Q2)	R ² =0.70-1.0
	Inferential statistics indicate two data sets are statistically different
	RSD≤10%
Definitive (Q3)	R ² =0.85-1.0
	Inferential statistics indicate two data sets are statistically similar (slope=1, intercept=0)

US EPA, QA/QC Guidance for Removal Program Activities, 1998

Layout

- Aims of the presentation
- Introduction
 - Metal contamination / Legislation
 - Analytical techniques
 - Quality Assurance (QA)
- **Application cases**
 - As anomalies in floodplains
 - (Handheld-EDXRF system)
 - C.Parsons, E.Pili, E.Margui, G.Roman-Ross, L.Charlet.
 - "Physical and chemical controls on Arsenic distribution on the Saone Flood plain: A statistical assessment of As liberation risks". Applied Geochemistry, submitted (2010)
 - Environmental impact of past-mining activities (portable EDXRF/TXRF systems)
 - Metal content in industrial waste waters effluents (portable EDXRF/TXRF systems)
- Conclusions and future perspectives



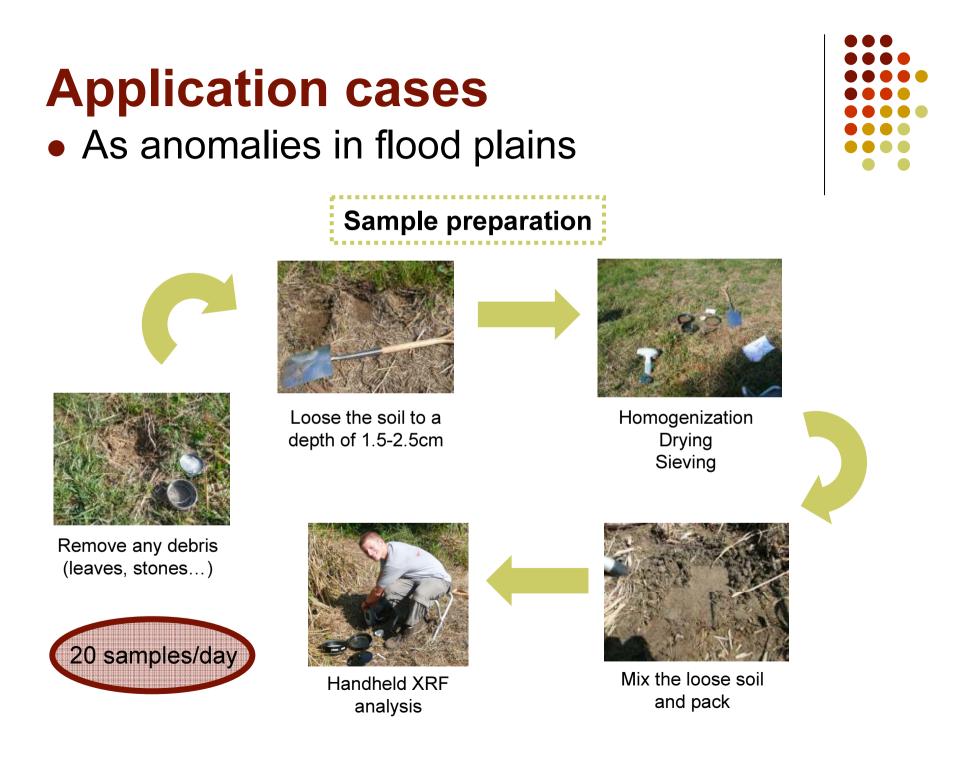
As anomalies in flood plains


Introduction and motivation

- Area characterized by flooding events which lead to reducing conditions and As liberation in soils
- Motivation: what is the spatial heterogeneity of As concentrations in soil on the floodplain and which factors control As distribution?

Analysis of a high amount of soil samples (n=119) In-situ analysis?

Instrumentation


NITON XLt Handheld-XRF (Thermo Scientific)

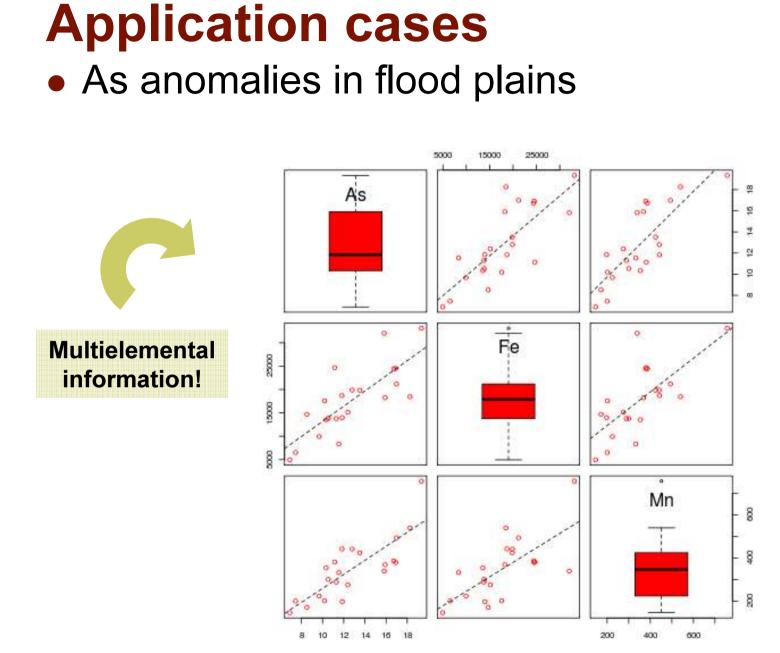
Weight	1.4 Kg
Dimensions	248x273x95 mm
Excitation source	Miniature X-ray tube (Ag anode, 40kV/50 μ A)
X-ray detector	High-performance Si-PIN detector
	(Peltier cooled)
Batteries	Rechargeable Lithium-ion battery packs
Analysis range	Ti (Z=22) to Pu (Z=94), 25 elements

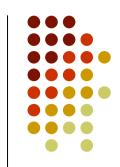
"point and shoot"

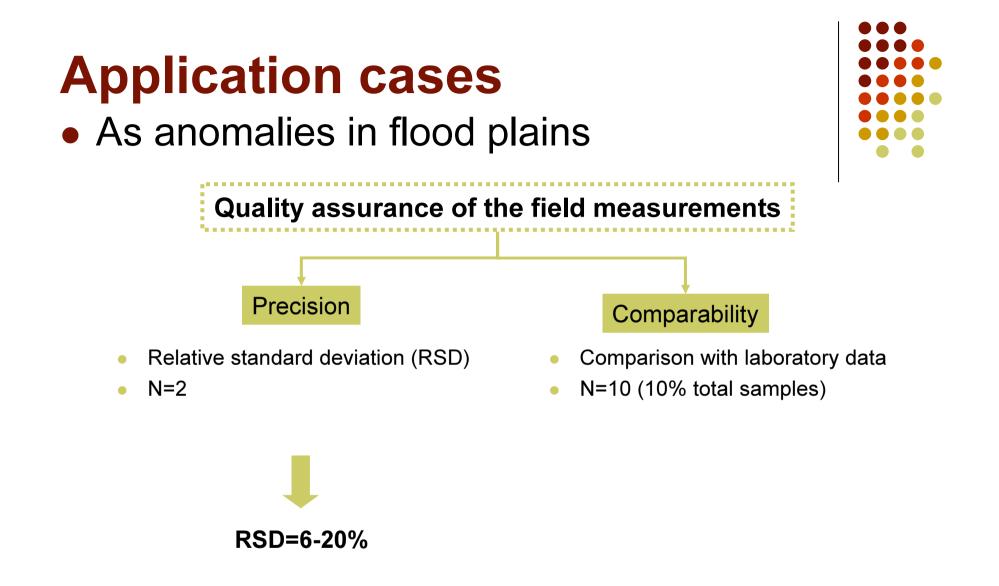
Application cases

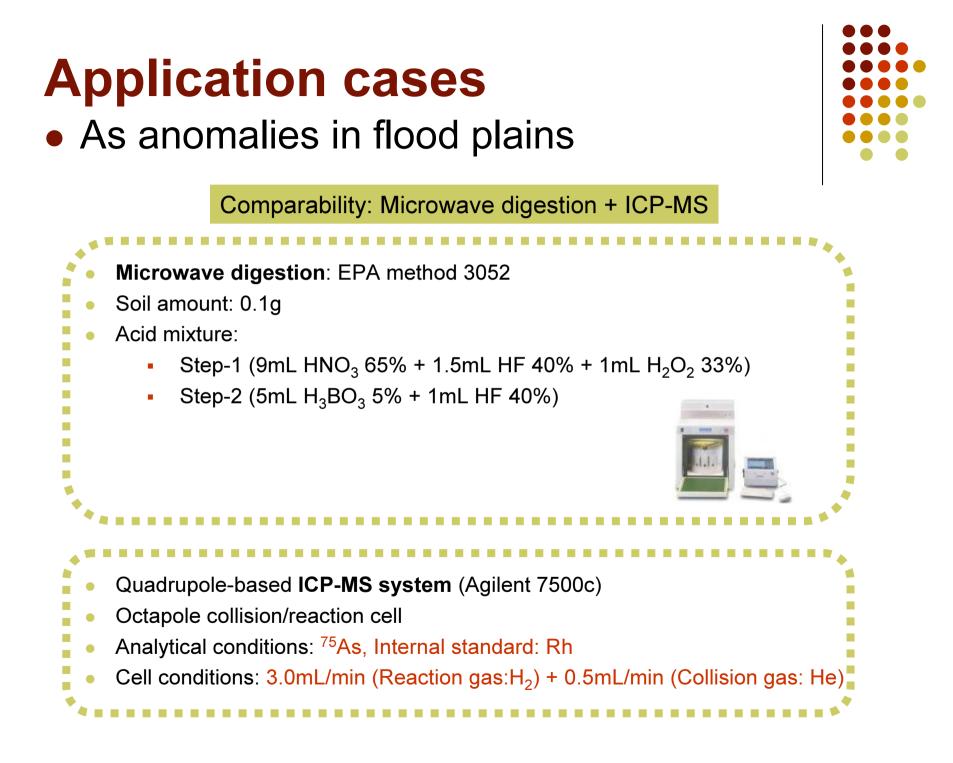
• As anomalies in flood plains

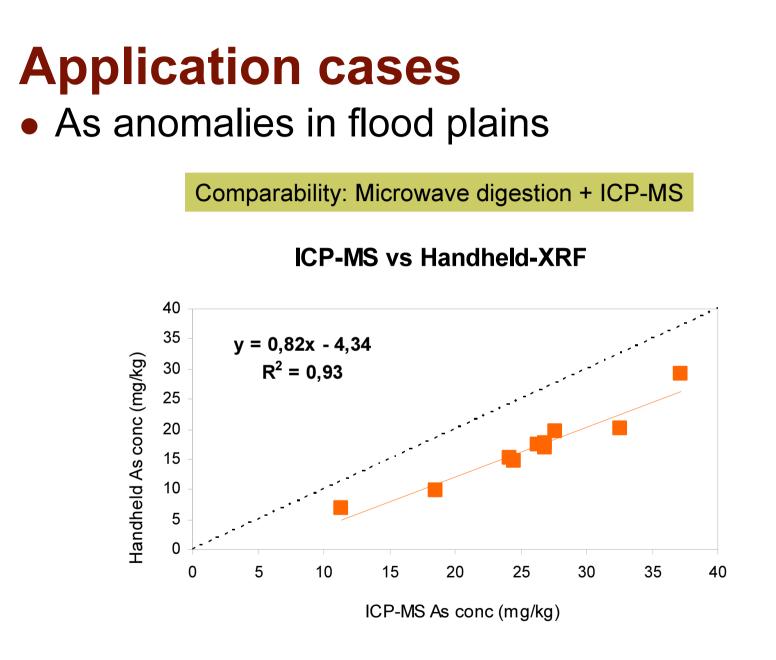
- Measuring time: 120s → LOD (As)~6mg/kg
- Quantization purposes: Compton normalization (eliminates need for time-consuming specific calibrations)

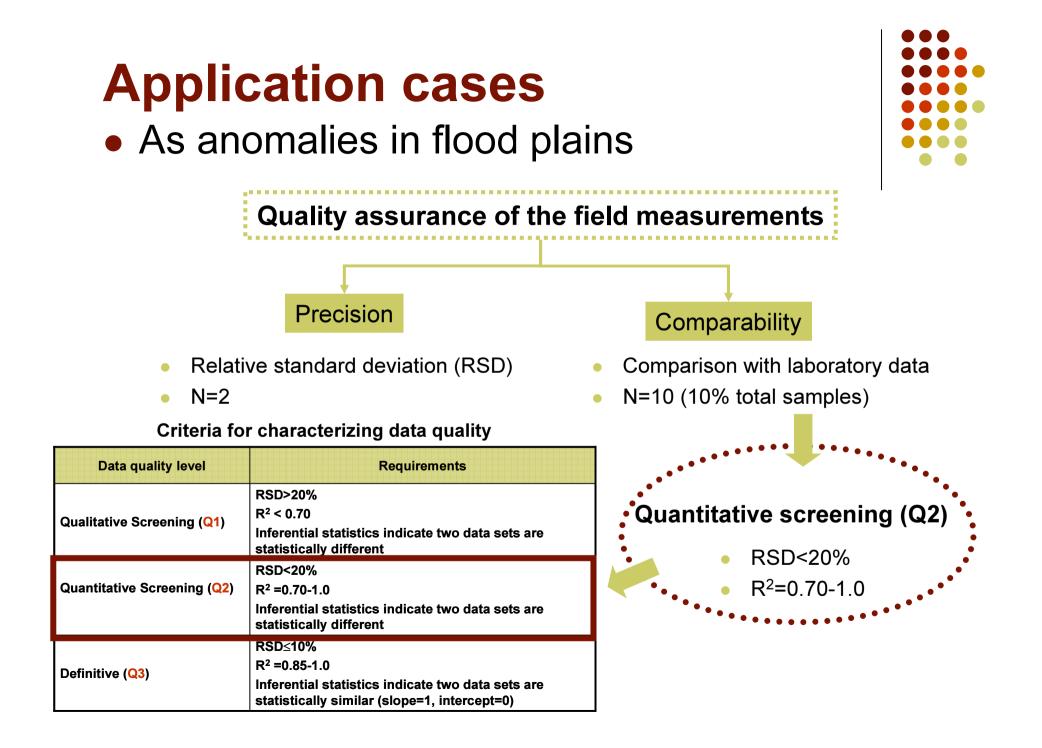

Results


N=119	As (mg/kg)	
Min.	6.9	
Max.	45	
Average	22	
	As (mg/kg)	
European average (soils)	6	
Guideline value agricultural soils	20	


Determination of "hot-spots"







Regression analysis: LR model, Handheld=A+B (ICP-MS)

Application casesAs anomalies in flood plains

 Handheld instrumentation prove to be a powerful tool for in-situ determination of As in flood plains (determination of "hot-spots").

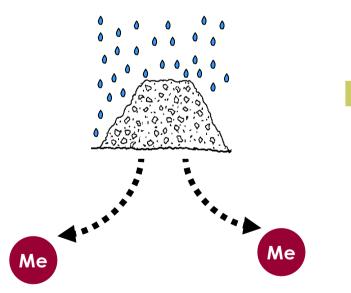
Conclusions

- Simple sample preparation in the field
- Speed of data acquisition compared to other methods.
- Multielemental information.
- Qualitative / Quantitative information
- Cost effective compared to traditional ICP-MS analysis.

Layout

- Aims of the presentation
- Introduction
 - Metal contamination / Legislation
 - Analytical techniques
 - Quality Assurance (QA)
- Application cases
 - As anomalies in floodplains (Handheld-EDXRF system)
 - Environmental impact of past-mining activities
 - (portable EDXRF/TXRF systems)

O.González-Fernández, I.Queralt. "Fast element screening of soil and sediment profiles using smallspot energy dispersive X-ray fluorescence: Application to mine sediments geochemistry". Applied Spectroscopy 64(2010), in press.

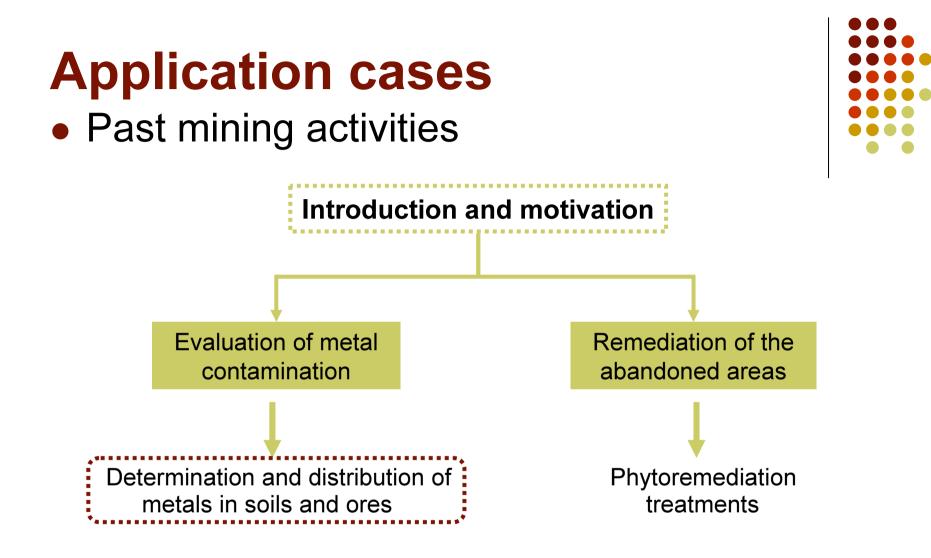

E.Margui,A.Jurado, M.Hidalgo, G.Pardini, M.Gispert, I.Queralt. "Application of small-spot energy dispersive X-ray fluorescence instrumentation in phytoremediation activities around metal mines". Applied Spectroscopy 63(2009)1396.

- Metal content in industrial waste waters effluents (portable EDXRF/TXRF systems)
- Conclusions

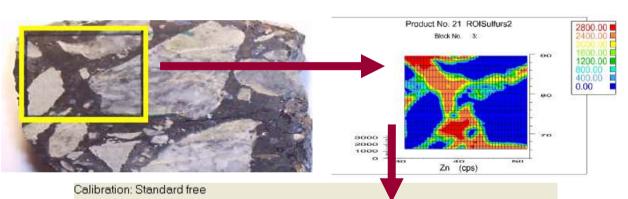
• Past mining activities

Introduction and motivation

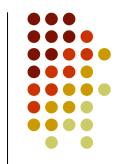
Mining wastes dumped indiscriminately


• Chemical weathering of sulphide minerals: release of metals into the environment !

The current problem of abandoned mining areas...

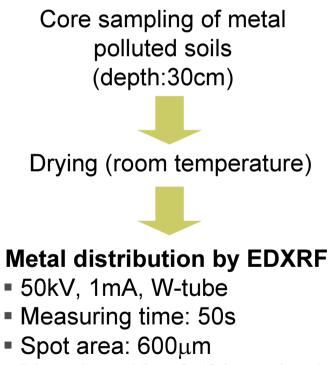


Metals are not biodegradable! (Environmental impact / accumulation)


- Past mining activities
- Distribution of regulated pollutants among different mineral phase ore veins:

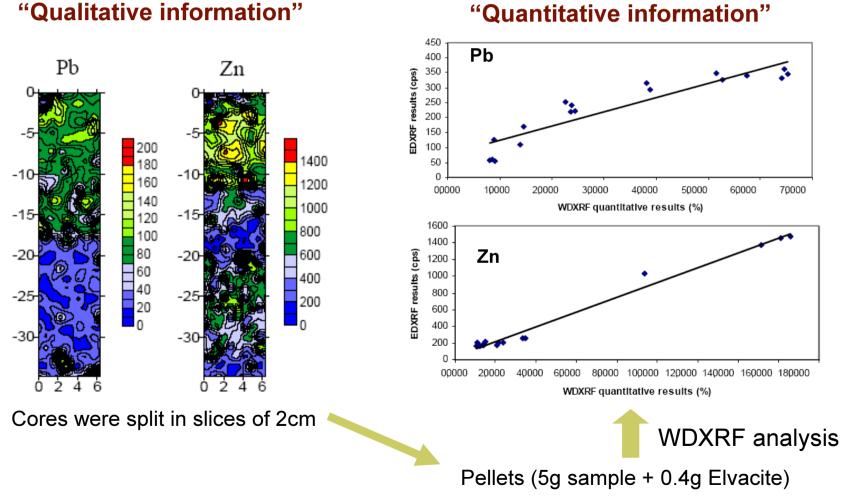
Benchtop EDXRF system

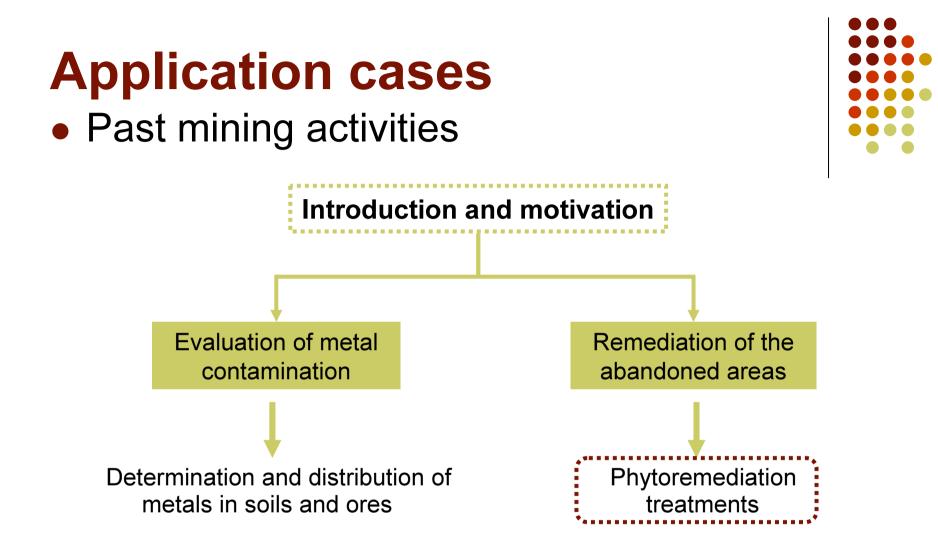
No	ZnS 1	CaCO	Fe 1 [Mn 1 [Cu 1 [Cd 1 [Pb1[Prüfer	1
287	64.2	28.3	6.40	0.682	0.100	0.392	-0.057	vr	1
288	27.1	55.1	16.0	1.75	-0.124	0.273	-0.110	Vr	1
289	1.19	77.3	19.8	1.84	-0.108	0.109	-0.034	∨r	1
290	2.28	70.6	24.7	2.40	-0.099	0.130	-0.069	√r	1
291	1.80	70.4	25.0	2.88	-0.090	0.080	-0.037	∨r	1
292	1.97	71.9	23.2	2.87	-0.017	0.089	-0.068	Vr	1
293	61.1	27.2	10.7	0.636	0.153	0.352	-0.041	√r	1
294	90.2	0.988	8.21	-0.008	0.083	0.568	-0.016	∨r	1
295	91.6	0.241	7.54	0.008	0.080	0.517	-0.015	√r	1
296	90.5	0.356	8.62	0.021	0.114	0.452	-0.012	√r	1
297	91.0	0.129	8.16	0.009	0.146	0.548	0.016	√r	1
298	91.8	0.256	7.43	0.002	0.076	0.496	-0.032	√r	1



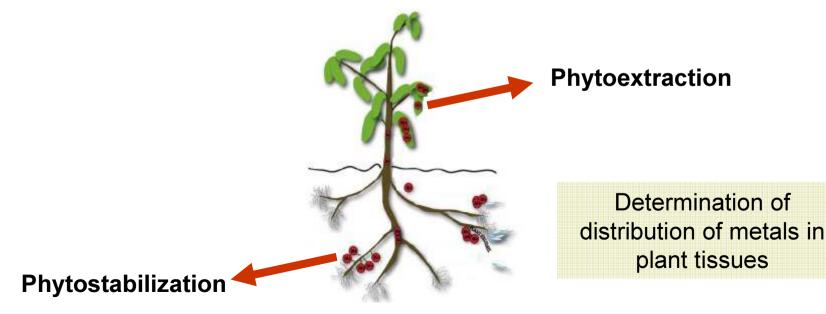
Past mining activities

• Evaluation of the effects of metal pollution in soils/sediments:





Mapping: 18x48 (864 points)


• Past mining activities

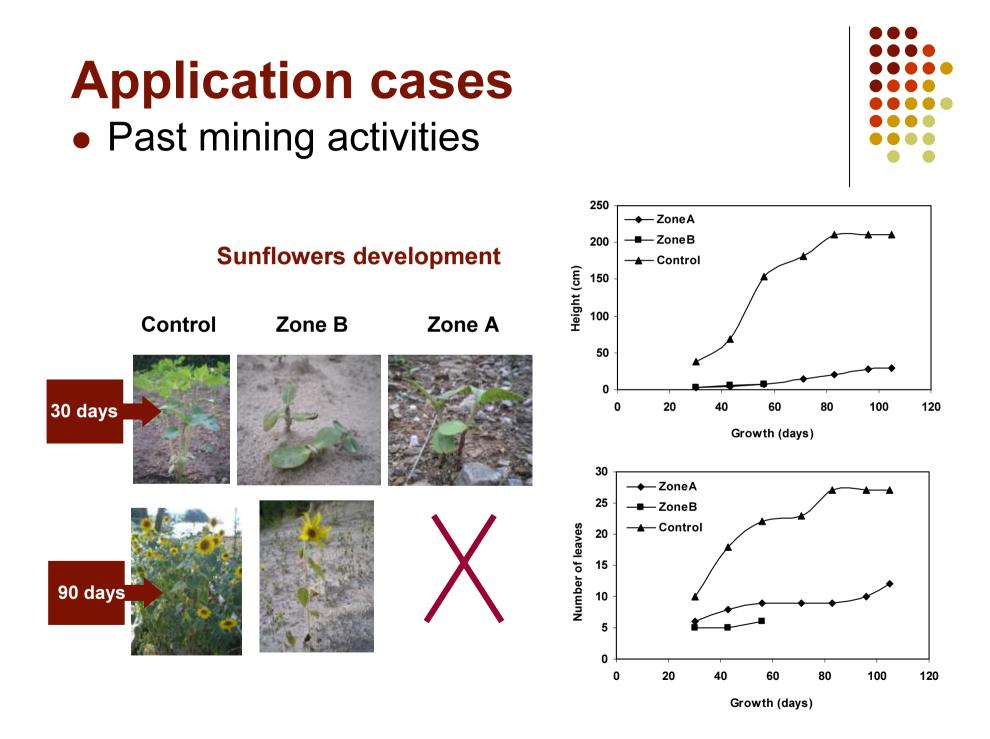
- Past mining activities
 - Phytoremediation Technology:
 - The use of plants for the remediation of metal contaminated environments
 - Complementary cost-effective non-invasive technology to the engineering based remediation methods

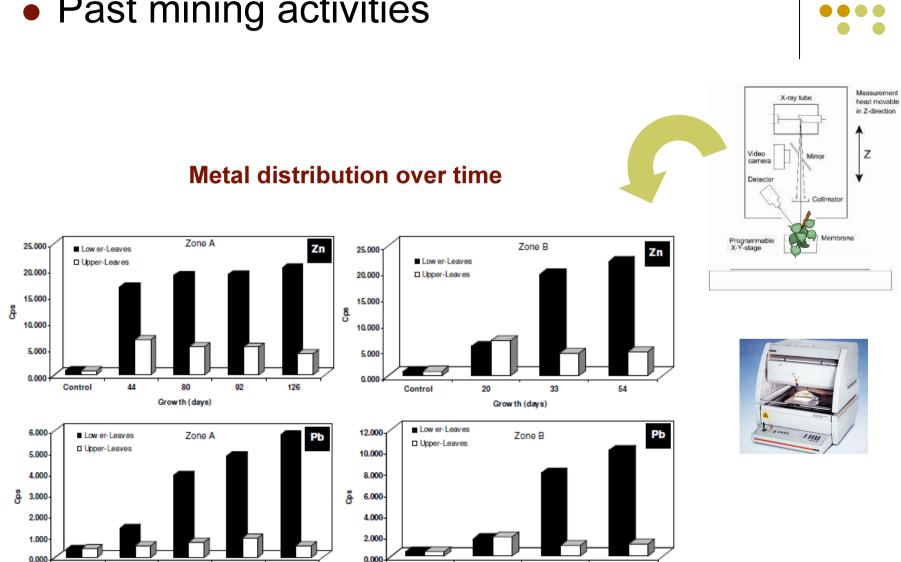
• Past mining activities

Potential use of sunflower (Helianthus annuus) for phytoremediation of an abandoned Pb/Zn mining area

Experimental land plots

Zone A (mining dump)




Zone B (mining dump)

Control soil

Control

20

33

Growth (days)

54

Application cases

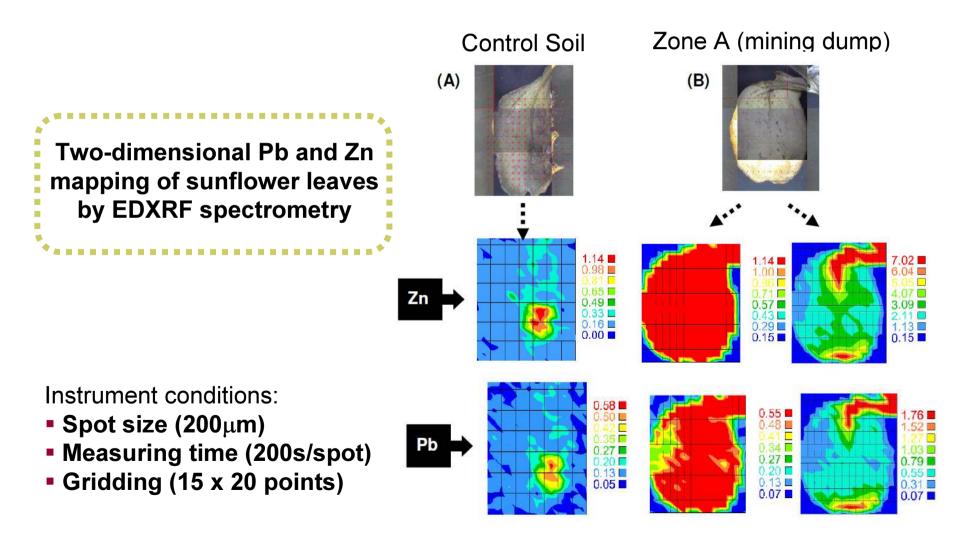
• Past mining activities

Control

44

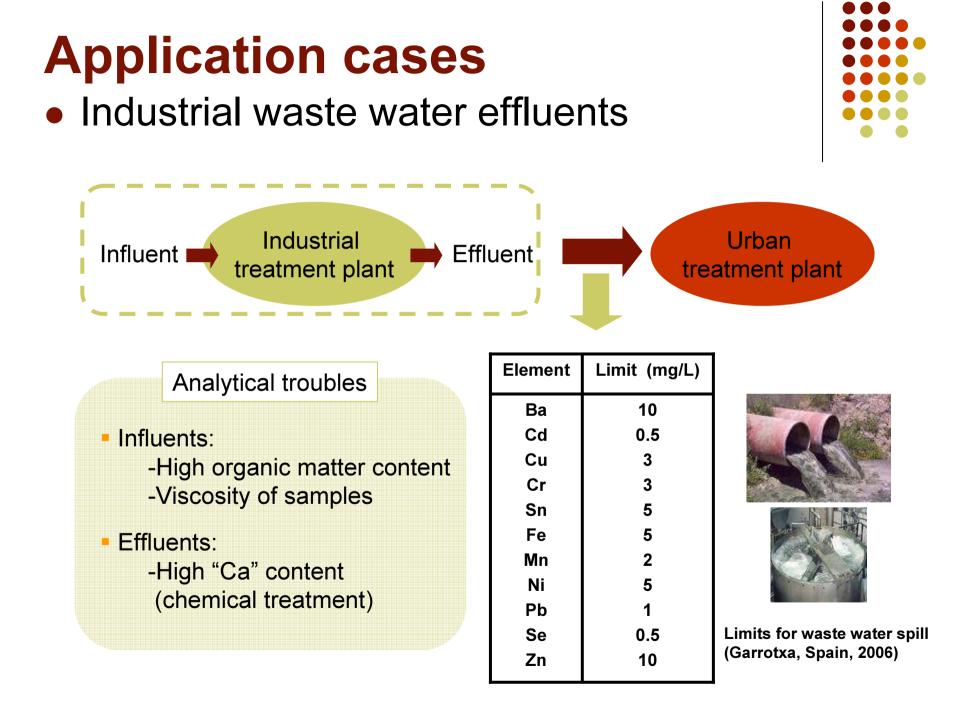
80

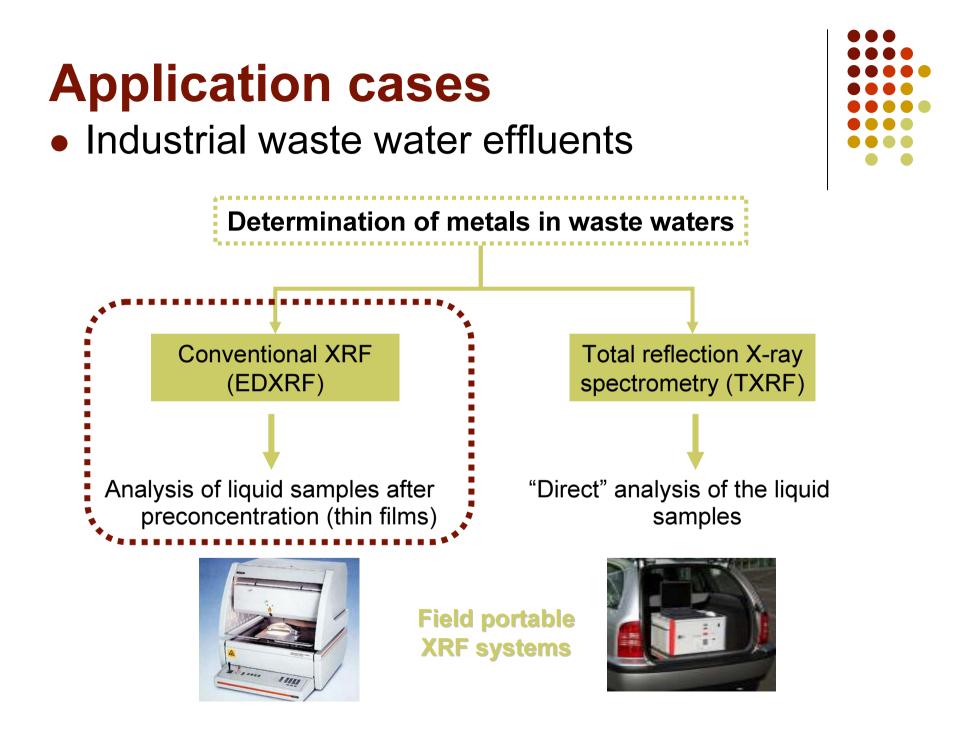
Grow th (days)

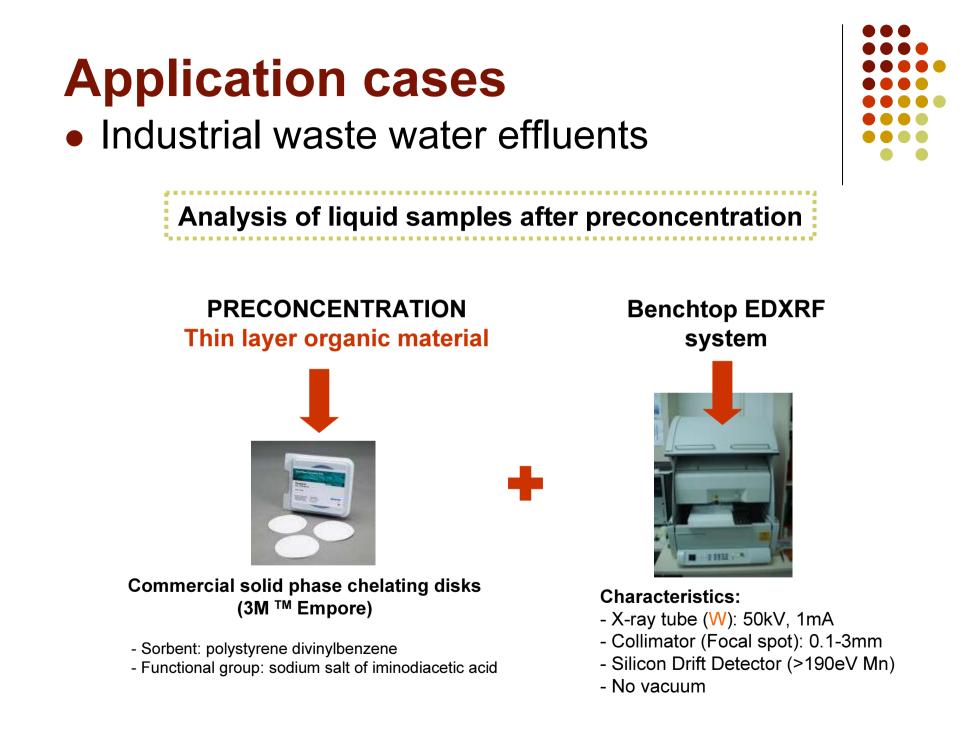

92

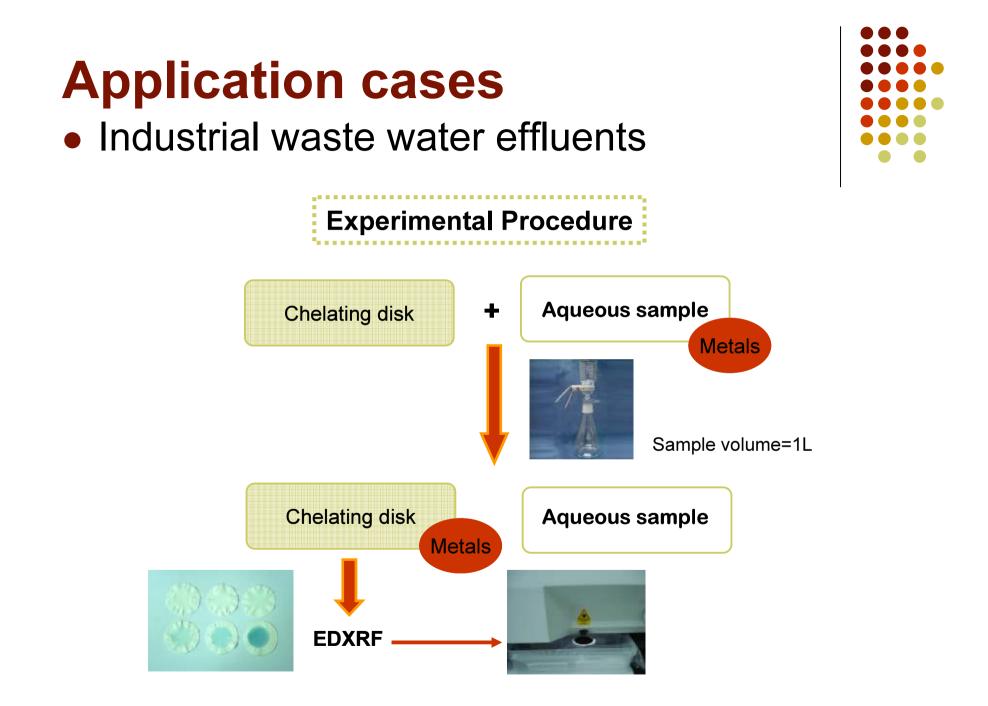
126

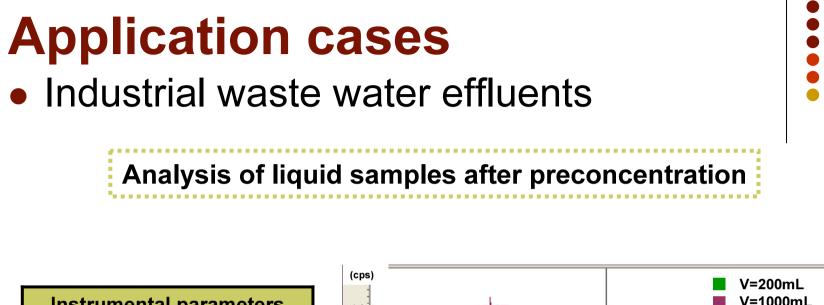
Past mining activities

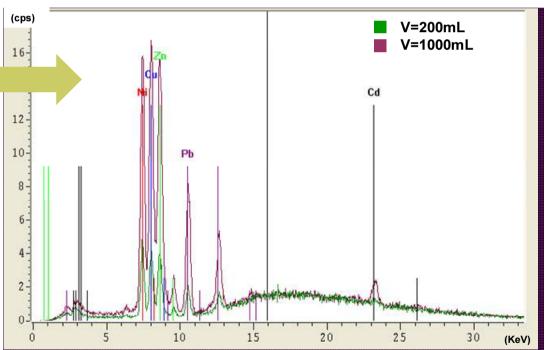


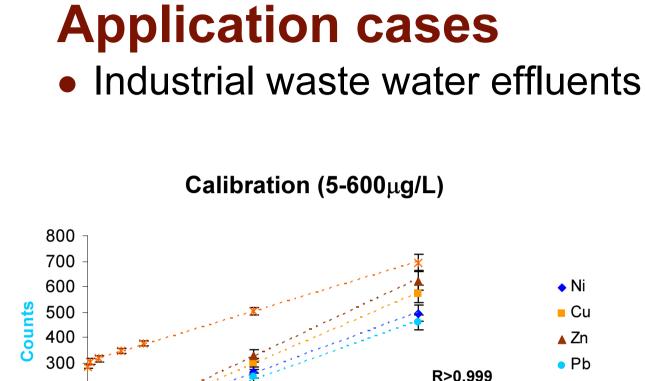



Layout


- Aims of the presentation
- Introduction
 - Metal contamination / Legislation
 - Analytical techniques
 - Quality Assurance (QA)
- Application cases
 - As anomalies in floodplains (Handheld-EDXRF system)
 - Environmental impact of past-mining activities (portable EDXRF/TXRF systems)
 - Metal content in industrial waste waters effluents
 - (portable EDXRF/TXRF systems)
 - E.Margui, J.C.Tapias, A.Casas, M.Hidalgo, I.Queralt. "Analysis of inlet and outlet industrial
 - waste water effluents by means of benchtop total reflection X-ray fluorescence spectrometry". Chemosphere 80(2010)2630.
- Conclusions







Instrumental parameters				
Anode X-Ray tube	W			
Voltage	50 kV			
Current	1 mA			
Filter	Ti300			
Collimator	3 mm			
Acquisition time	100 s			
Measures	5			

Determination of: Ni, Cu, Zn, Pb and Cd

EDXRF spectra (standard solution at 600 μ g/L level)

400

Metal concentration (ug/L)

200

100

0 🧳

0

200

Metal	LOD (µg/L)
Ni	1.2
Cu	2.4
Zn	1.7

Pb

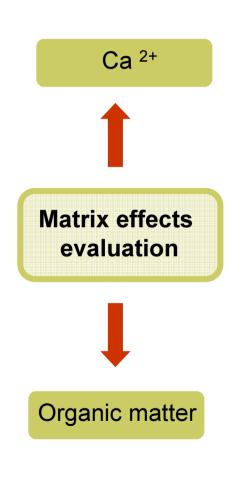
Cd

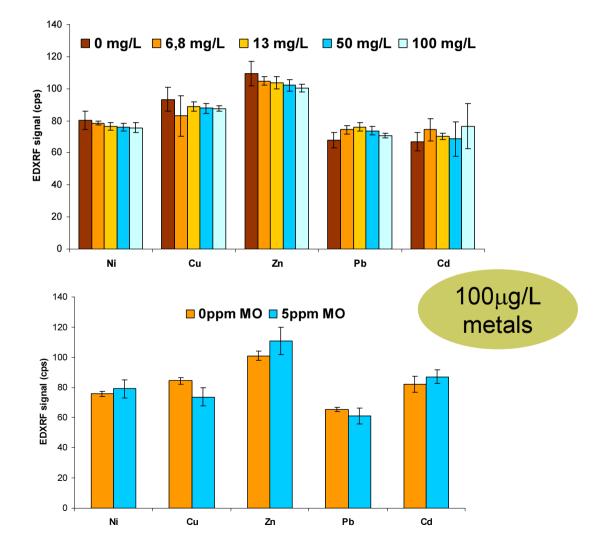
1.4

16

Detection Limits

Accuracy							
Fortified tap water (100 μ g/L)	Ni	Cu	Zn	Pb	Cd		
Recovery (%)	101.0	100.5	98.8	99.4	90.8		


600


× Cd

800

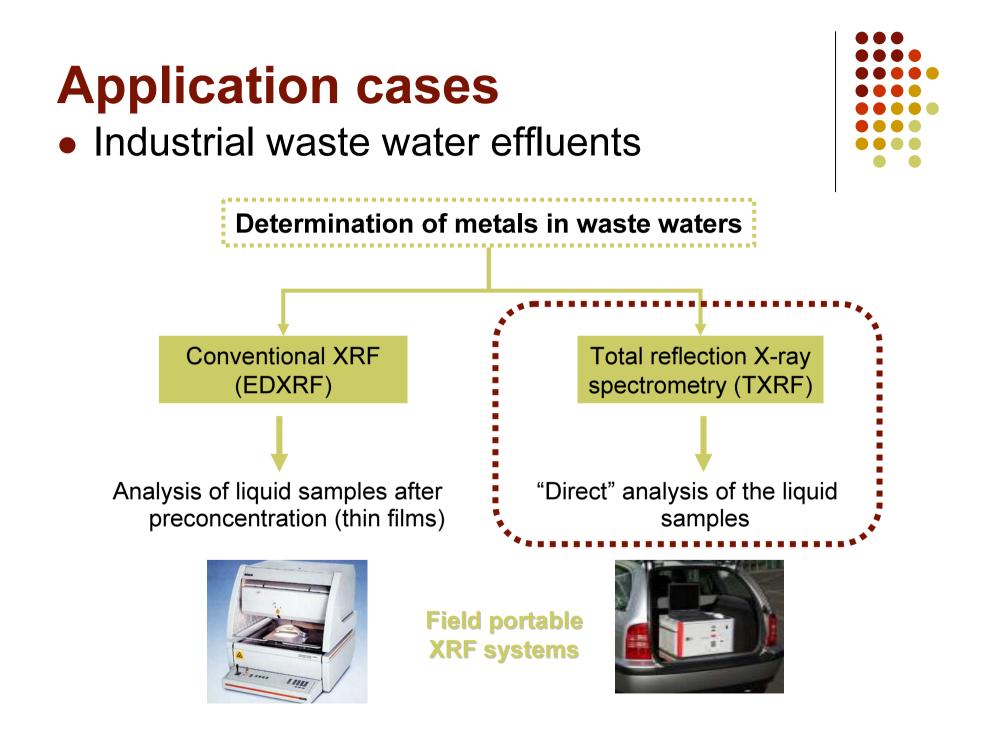
Industrial waste water effluents

Application to real samples

	EDXRF	method	ICP-MS		
μ g/L	Mean	Std.Dev	Mean	Std.Dev	
Ni	351	9	351	7	
Cu	114	3	130	3	
Zn	350	5	400	8	
Pb	n.d	*	n.d	*	
Cd	n.d	*	n.d	*	

Waste water

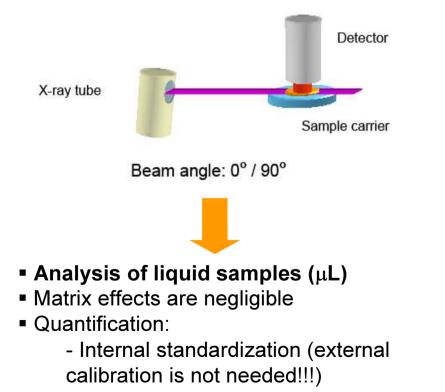
Industrial waste water effluents

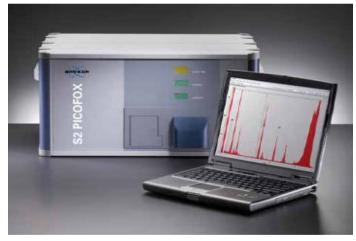


Comparability: Benchtop EDXRF / HE-P-EDXRF

X-ray tube (Gd) Acquisition time:100s Measures:3

Element	Conditions	Secondary target	Analytical line
Ni, Cu, Zn	65kV-6mA	Ge	Κ _α
Pb	100kV-6mA	Zr	L_{lpha}
Cd	100kV-6mA	Csl	Κ _α
Cd	100kV-6mA	Al ₂ O ₃	Κ _α


LOD (µg/L)	Benchtop EDXRF	HE-P-EDXRF	
Ni	1.2	0.1	
Cu	2.4	0.1	
Zn	1.7	0.1	
Pb	1.4	0.2	
Cd	16	0.3 (Csl target) 0.6 (Al ₂ O ₃ target)	



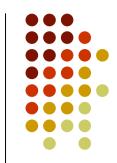
Industrial waste water effluents

Total reflection X-ray fluorescence spectroscopy (TXRF)

Benchtop TXRF

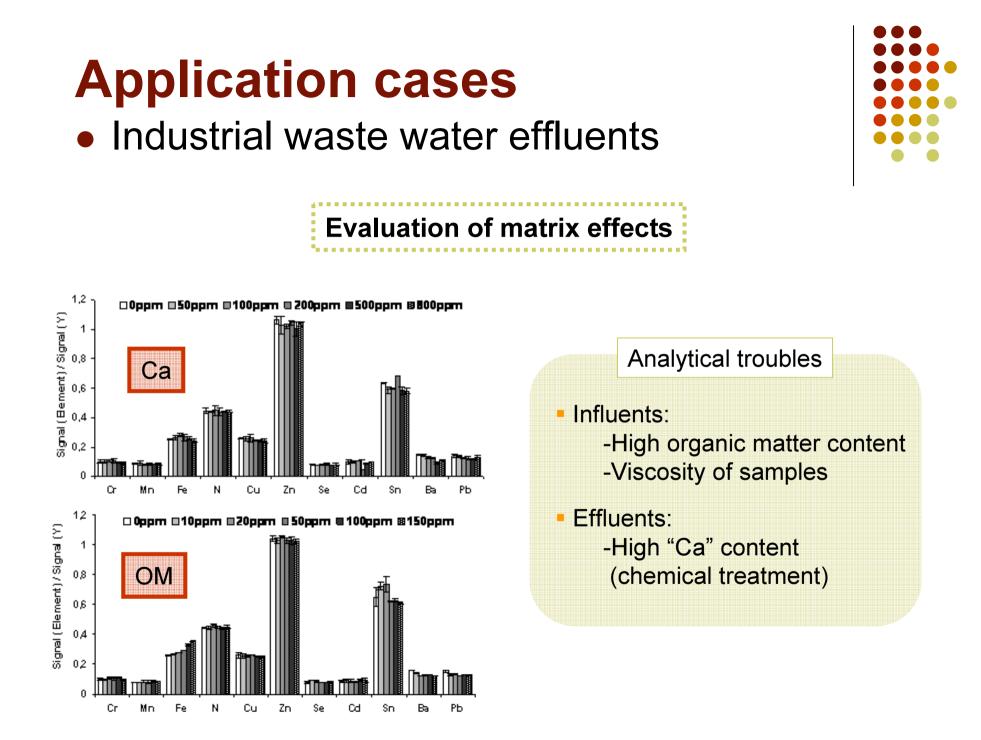
- Metal ceramic X-ray tube (W). 50kV, 1mA (heavy elements determination: Cd)
- Multilayer monochromator
- X-Flash Silicon Drift Detector (>149eV Mn)

• Industrial waste water effluents


Limits of Detection

	Limit	Limits of detection (TXRF)				
Element	Value (mg/L)	Raw sample	MW digestion			
Cr	3	0.24	0.24			
Mn	2	0.17	0.12			
Fe	5	0.09	0.07			
Ni	5	0.11	0.07			
Cu	3	0.10	0.06			
Zn	10	0.08	0.05			
As	1	0.03	0.02			
Se	0.5	0.02	0.09			
Cd	0.5	0.009	0.003			
Sn	5	0.04	0.03			
Ba	10	0.49	0.48			
Pb	1	0.01	0.01			

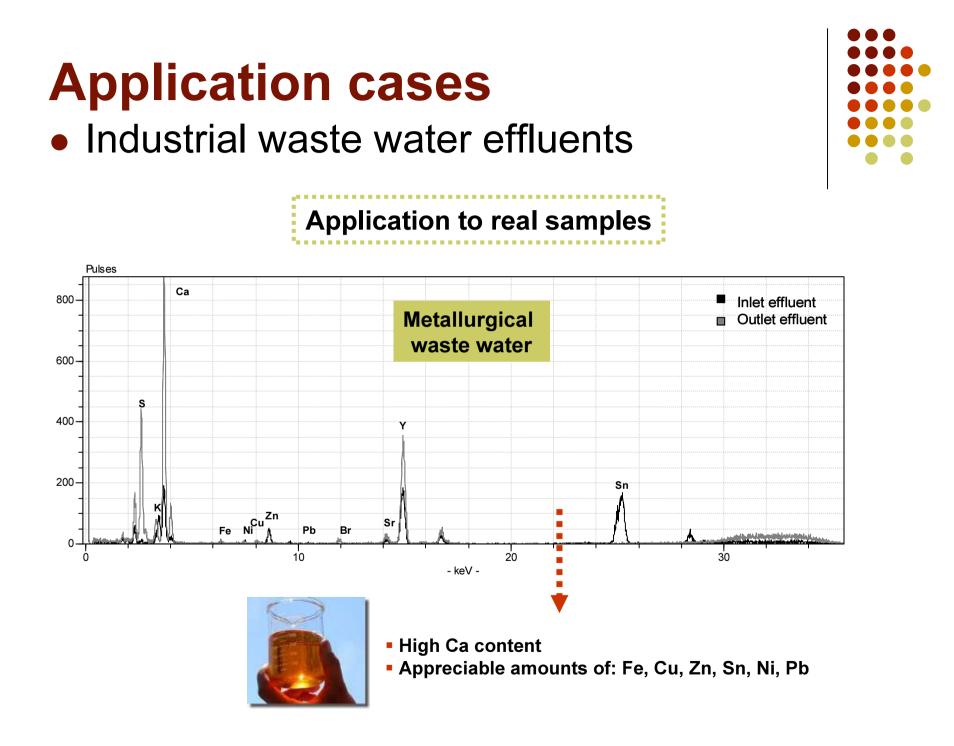
Limit values: according to the regulation from the Catalonia Water Agency (Spain)

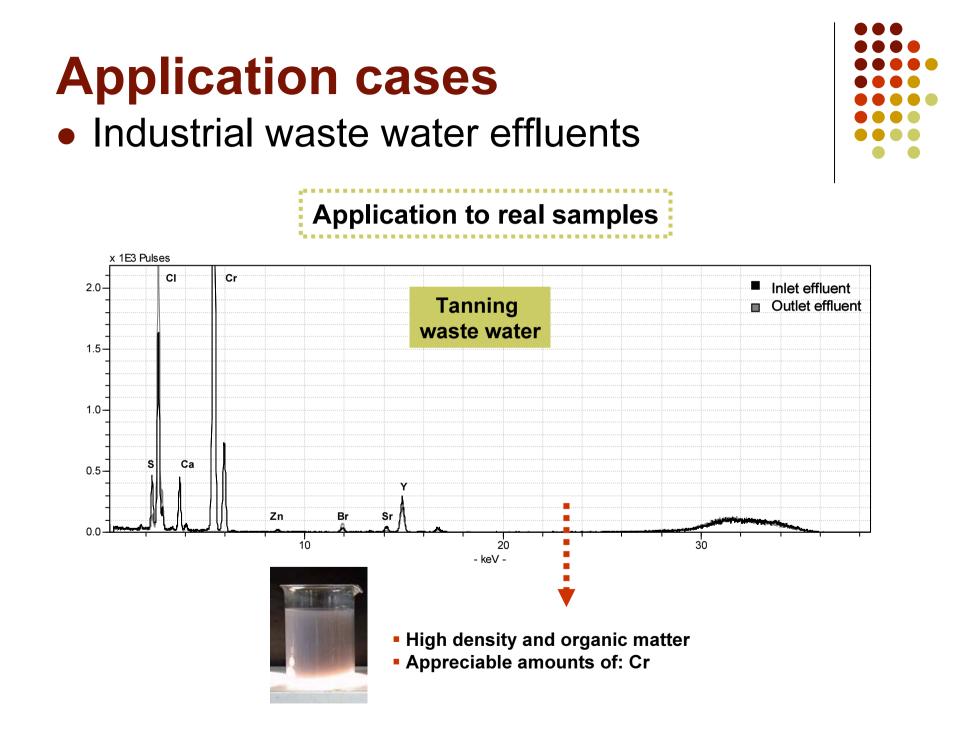

• Industrial waste water effluents

Accuracy and Precision

Element	Certified		Raw sa	ample	MW digestion	
Element	Value	SD	Mean	SD	Mean	SD
Cr	1	0.005	1.244	0.245	0.993	0.035
Mn	2	0.01	2.014	0.001	2.199	0.602
Fe	5	0.025	4.858	0.041	4.339	0.101
Cu	0.3	0.002	0.385	0.031	0.399	0.072
Ni	5	0.025	4.928	0.192	4.522	0.341
Cu	2	0.01	1.997	0.146	1.918	0.063
Zn	3	0.015	3.062	0.060	2.831	0.146
As	0.5	0.003	0.442	0.076	0.409	0.087
Se	0.5	*	0.440	0.025	0.075	0.005
Cd	0.1	0.0005	0.276	0.039	0.321	0.022
Sn	5	*	4.496	0.228	4.657	0.008
Ba	10	*	11.249	0.748	11.778	0.001
Pb	0.5	0.003	0.830	0.066	0.746	0.001

Element concentrations (mg/L) for the direct TXRF analysis of the reference material SPS-WW2" (elements in wastewaters) and after a microwave digestion (sample volume: 20μ L, 1000s, n=3)




• Industrial waste water effluents

Application to real samples

	Inlet effluent				Outlet effluent			
	TXRF		ICP-MS/ICP-0	ICP-MS/ICP-OES			ICP-MS/ICP-OES	
	Direct analysis	MW digestion	MW digestion	n	Direct analysis	MW digestion	MW digestion	
	Mean/SD	Mean/SD	Mean/SD	Mean/SD		Mean/SD	Mean/SD	
Meta	Metallurgical waste water							
Cr	12.5 / 0.3	14.2 / 0.6	12.6 / 1.0		n.d	n.d	n.m	
Fe	88.9 / 0.9	87.0 / 1.0	99.0 / 2.0		n.d	n.d	n.m	
Ni	93.8 / 0.8	88.8 / 0.9	82.0 / 3.0		0.22 / 0.02	0.19 / 0.02	0.17 / 0.04	
Cu	27.1 / 0.3	27.8 / 0.5	27.9 / 0.8		n.d	n.d	n.m	
Zn	453.3 / 3.1	409.0 / 2.0	389.0 / 2.0		0.62 / 0.03	0.67 / 0.04	0.59 / 0.02	
Pb	0.93 / 0.03	1.36 / 0.09	n.m		n.d	n.d	n.m	
Tanr	ning waste water							
Cr	5.1 / 0.3	3.6 / 0.3	4.00 / 0.05		n.d	0.23 / 0.06	0.156 / 0.002	
Fe	0.77 / 0.02	1.2 / 0.3	1.50 / 0.02		3.0 / 0.1	3.07 / 0.09	3.65 / 0.01	
Ni	0.11 / 0.01	0.12 / 0.04	0.093 / 0.001		n.d	n.d	n.m	
Cu	0.25 / 0.03	0.29 / 0.06	0.279 / 0.001		0.37 / 0.08	0.28 / 0.05	0.261 / 0.006	
Zn	0.21 / 0.01	0.22 / 0.01	0.19 / 0.02		n.d	n.d	n.m	
Pb	0.93 / 0.01	0.93 / 0.06	0.768 / 0.005		n.d	n.d	n.m	

- Routine and screening analysis of industrial inlet and outlet effluents: direct TXRF analysis depositing 20µL of the internal standardized sample on a quartz reflector
- Adequate detection limits according to current legislation
- TXRF can be performed directly on the raw waste water sample
- Multielemental information
- Easy quantification (internal standardization)
- Low operating costs (simple sample treatment, no gas consumption)

Layout

- Aims of the presentation
- Introduction
 - Metal contamination / Legislation
 - Analytical techniques
 - Quality Assurance (QA)
- Application cases
 - As anomalies in floodplains (Handheld-EDXRF system)
 - Environmental impact of past-mining activities (portable EDXRF/TXRF systems)
 - Metal content in industrial waste waters effluents (portable EDXRF/TXRF systems)
- Conclusions

Conclusions...

Field portable X-ray fluorescence spectrometry systems (FPXRF)

Advantages 🙂	Limitations 🛞
 Screening tool to design a targeted	 Need for laboratory analysis check Detection limits require careful
sampling strategy Multielemental characterization Minimal sample preparation On-site decision (remediation stages) Allows prioritization of sample	consideration More reliable for some metals than
analysis Relatively low investment and	others Heterogeneity of sample may affect
operational costs Solid, liquid samples	the results

Acknowledgments

- Laboratory of X-ray Analytical Applications (ICTJA-CSIC), Barcelona, Spain
- Department of Chemistry. University of Girona, Spain.
- Micro and Trace Analysis Centre. University of Antwerp (Belgium)
- Département Analyse Surveillance Environment (CEA), Bruyères-le-Chatel, France.
- Laboratoire de Géophysique Interne et Tectonophysique (LGIT-OSUG). University of Grenoble I, Grenoble, France.

and to you all, for your kind attention...

