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Overview and Motivation

= Potential for sodium-cooled fast reactors to survive severe accident initiators with
no damage has been demonstrated through whole-plant testing in EBR-II

— Natural reactivity feedback mechanisms were sufficient to reduce core power

— Natural convection cooling was sufficient to remove heat during the transients

= Accurate, whole-plant dynamics safety simulations will be required to
demonstrate the degree to which new, advanced designs will possess these
desired safety features.

= Current transient safety capabilities in SAS4A/SASSYS-1 are limited to perfect
mixing or coarse, 1-D treatment of plenums.

— 1-D treatment is currently limited to three, discrete, stratified layers.

— Correlations are used for incoming jet flow and entrainment.

— Thermal stratification impacts natural circulation driving forces, reactor vessel expansion,
control-rod driveline expansion, IHX performance, pump inlet conditions, RVACS heat
rejection, etc.

= Thermal stratification was evaluated by coupling SAS4A/SASSYS-1 with the high-
fidelity CFD thermal-hydraulics analysis capabilities of STAR-CD.

— Applied to the multidimensional simulation of a reactor outlet plenum.

— Provides much better resolution of multidimensional temperature and flow fields,
especially during low flow conditions that result in thermal stratification.



4S Outlet Plenum Stratification
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results from PLOF and ULOF accident sequences.

= Plenum results from the 2-D treatment (CERES) fall
between SAS4A/SASSYS-1 stratified model (blue)
and a perfect mixing model (red) during a PLOF.

= More detailed treatment may reveal better mixing
than CERES results predict.
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Impact of Stratification on IHX Inlet Temperatures



SAS4A/SASSYS-1 Model Represents the
Whole-Plant

= Whole-plant discretization by CFD is
beyond current computing capabilities.
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— Include dV/dT, and dV/dP effects.



Outlet Plenum Replaced by 3-D or 2-D CFD
Model
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Temperature (°C)

Normalized Power or Flow

Treatment of Boundary Conditions
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Initial coupling is one way:

— SAS4A/SASSYS-1 — STAR-CD

— Valid during steady-state (well mixed)

— Valid during initial pump coast-down
(not buoyancy driven)

— Not valid at later times

Used to evaluate the effects of
model assumptions and fidelity on
thermal stratification, flow
distributions, and primary-side IHX
inlet temperatures.

Thermal feedback will be added in
future developments.

Individual core assembly flow rates
and temperatures are used as
boundary conditions for the STAR-
CD CFD simulation.

For the free surface simulation,
outflows to the IHX provide an
additional boundary condition.



Steady State Temperature Distributions

et

B ot W S Ol et
L5 5 5 0 CACNCR -~ C0C0 00
DL R — R 00— INaorICnn
fmtd el Pl il el el el ]

Two-Phase Single-Phase Two-Phase Single-Phase
(Free Surface) (Fixed Volume) (Free Surface) (Fixed Volume)



Steady State Velocity Magnitude
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Transient Primary-Side IHX Inlet Temperatures
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510 —ee - -
Single Phase SAS4A/SASSYS-1 (0 —-3600 s) 1 <1 min <1 min
/(Fixcd Velume) X -
2-D Axisymmetric, VoF (cover gas)
~ 500
e Two Phase Stage 1 (0 —1535s) 8 187.4 239.3
e (Free Surface)
% 480 Stage 2 (1535 — 3600 s) 12 90.3 137.4
: Perfect Mixing CERES Recuts Total 277.7 376.7
@
L:'S 480 2-D Axisymmetric, Single Phase
E Stage 1 (0 — 1000 s) 12 84.3 86.2
T 470 Stage 2 (1000 — 2000 s) 12 23.8 253
Stage 3 (2000 — 3000 s) 12 21.0 22.4
460 Stage 4 (3000 — 3600 s) 12 5.3 5.4
Total 134.4 139.3
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= Only the 2-D models were used to compute the full transient.
= Calculation of initial flow coast down dominates computing time.

= Treatment of free-surface motion appears to result in significant increase in thermal
mixing throughout the plenum.

— Converges to perfect mixing results by 2400 seconds.
= Single phase model is generally consistent with the results from CERES.



Transient Temperature Profiles
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Transient Temperature Profiles
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Summary

= Coupling between an existing, whole-plant systems code and a high-
fidelity CFD code has been carried out.

— Evaluate the conditions of outlet plenum thermal stratification during a
long-term PLOF.

— Four models were created to evaluate the effects of model assumptions
and fidelity on thermal stratification, flow distributions, and primary-side
IHX inlet temperatures.

« 3-D (steady-state) and 2-D (steady-state and transient)
« Single phase (no cover gas) and two-phase (with cover gas)

= Modeling treatment (free surface vs. single phase) has a
considerable impact on thermal mixing.

= Future work will include thermal feedback in the
SAS4A/SASSYS-1/STAR-CD coupling.

— Assess the impact of thermal stratification on natural circulation flow rates
in the PLOF and ULOF transient for 4S.

— Compare with CERES results.



