

Uranium Mining

Milling Industry in India

Per Capita Power Consumption

Power: The urgent need

- Per capita power consumption is low.
- Installed generation cap. to be raised from 138.73 to 417GWe by 2020
- Share of nuclear power to increase from 4120 to 20,000 MWe by 2020
- Uranium requirement to

increase accordingly

Power Sources and Constraints

COAL:

- Inadequate coal reserves
- Strain on transportation
- High ash in Indian coal and low
- calorific value.
- •CO₂ emissions
- OIL & GAS AS FUEL :
- Inadequate reserve, 70%
- requirement is met by import
- Complex geo-political environment

Power Sources and Constraints

HYDROELECTRIC

Limited to geographically suitable sites Sites are mostly away from demand centers. **Dependent on rain-fall. Effect on ecology Displacement of vast population. NON-CONVENTIONAL** Limited scope at present level of technology **Poor capacity factor Diffused and intermittent source**

"..... We must break the constraining limits of power shortages, which retard our development. Nuclear energy is not only cost effective, it is also a cleaner alternative to fossil fuels....."

Dr. Manmohan Singh, Kalapakkam, 23rd Oct,2004

Energy Security for India

Total:112.10 GWe

Total:1344 GWe

India has moderate uranium reserves:61,000 t recoverable metal.
It can support 10,000MWe of PHWR
India has 30% of world reserve in thorium:2,25,000t recoverable metal

Three Stage Nuclear Power Programme

Indian Nuclear Power Programme

REACTOR TYPE AND CAPACITIES	CAPACITY (MWe)	CUMULATIVE CAPACITY (MWe)
15 PHWRs and 2 BWRs reactors at 6 under operation, Tarapur, Rawatbha Kalpakkam, Narora, Kakrapar and Ka	ta, 4,120	4,120
 3 PHWRs under construction at Kaiga (2x220 MWe), RAPS-5&6(2x220 MWe)) 	to be 660 completed during XI Plan	4,780
 2 LWRs under construction at Kudankulam(2x1000 MWe) 	2,000	6,780
 PFBR under construction at Kalpakkam (1 X 500 MWe)) 	500	7,280
> Projects planned till 2020 PHWRs(8x700 MWe), FBRs(4x500 N LWRs(6x1000 MWe), AHWR(1x300 I		21,180
> TOTAL by 2020		21,180 MWe

Uranium Mining in India

Under the administrative control of

Department of Atomic Energy

Uranium Corporation of India Ltd (a Public Sector Enterprise)

With mandate to mine and process uranium ore

Set-up in 1967

Operating:Five underground mines
One openpit mine
Two ore processing plantsConstructing:One underground mine
One mega mining and
processing project

Planning:Two mega mining &(next 5 years)processing projects

Net worth: 240 million USD Manpower: 4600

Uranium Requirement of India

INDIGENOUS PRODUCTION

Sea water, phosphate rock etc

SINGHBHUM SHEAR ZONE

SINGHBHUM SHEAR ZONE

- URANIUM DEPOSIT discovered at JADUGUDA 1951
- JADUGUDA MINE commissioned in 1968 (230m depth)
- Deepened in 1976 (640m depth)
- Deepened in 2001 (905m depth) Underground shaft

- BHATIN UNDERGROUND MINE A small deposit with limited life and depth persistence
- Commissioned in 1986 (200m depth)
 - NARWAPAHAR MINE A large mechanised mine with trackless equipment
 - Entry through decline (7⁰) and vertical shaft
 - Operating since 1995

- TURAMDIH MINE In operation since 2003
- Mining technology similar to Narwapahar

• BAGJATA MINE – Commissioned in Dec. 2008

• Mining technology similar to Narwapahar

- BANDUHURANG MINE Commissioned in 2009
- The first opencast uranium mine of the country

F.W.Drive

Cut-and-Fill Stoping

Equipment in UCIL

URANIUM ORE PROCESSING

Operates two plants in Singhbhum

JADUGUDA PLANT –	Commissioned in 1968
	Expanded two times
	3 rd phase expansion underway

TURAMDIH PLANT –Operational in 2007High level of automationFurther expansion taken up

- Major Processes
- Acid leaching
- Ion Exchange
- MDU Production

URANIUM ORE PROCESSING

Automation:

Particle size monitors

Horizontal belt filter

Pressure filter

High degree of instrumentation –

PLC based control system with Man

CRUSHING, GRINDING DEWATERING

LEACHING

MDU FILTRATION & PACKING

WASTE MANAGEMNET

- Waste rock of mines used for back-filling of stopes
- Coarser fraction tailings (deslimed) used for back-filling
- Slimes stored in impoundment facility (Tailings Pond)
- Plant effluent treated before discharge to public domain

TAILINGS POND

- Well engineered with natural barriers on three sides
- Channel ways and well-laid drainage system for discharge of effluents
- Reclamation of Tailings pond after use

WASTE MANAGEMNET

View of Tailings Pond at Jaduguda

Coursing of Tailings pond water to ETP

Treatment of Effluent

Reclamation of used Tailings Pond with soil cover and plantation

TUMMALAPALLE URANIUM PROJECT

Strata bound type deposit

Strike extension: 5.6 kmDip:15 - 17°Mineralisation up to 275 m depth

Width of lodes after block modelling: HW Lode 3.2 m FW Lode 2.5 m

Parting between lodes: 1.5 to 3 m

MINE DEVELOPMENT AT TUMMALAPALLE

PROPOSED MINING METHOD

MINING EQUIPMENT

MAJOR EQUIPMENT:

- •Low Profile Loaders (LHD)
- •Low Profile Dump Truck (LPDT)
- •Drill Jumbo
- •Low Profile Dozer
- •Low Profile Bolting Machine
- •Stationary hydraulic rock breaker/ sizer
- •Belt conveyor
- •Utility Vehicles
 - -Lube Truck
 - -Passenger Vehicle
 - -Crane
 - -Bulk Explosive Van

TUMMALAPALLE MINE ENTRY UNDER CONSTRUCTION

LAMBAPUR URANIUM PROJECT

MINING EQUIPMENT

1.30 m

Adjustable roof, height 1.77 m (max) Ground clearance: 0.26 m Rock drill: COP 1838ME Feed length 5.29 m Hole depth: 3.40 m Turning radius: 5.6/2.9 m (outer/inner) Boom coverage: 7.5/5.4 m (w/h)

1.56 m

Total length: 8.73 m Bucket: E-O-D (Eject-O-Dump) Bucket tip height: 2.51 m Ground clearance: 0.33 m Tramming capacity: 6 t Bucket volume: 2.1 m3 (2.7 yd3) Turning radius: 5.4/2.2 m (outer/inner)

LAMBAPUR URANIUM PROJECT: CONCEPTUAL THICKENED TAILINGS DISPOSAL SYSTEM

MAHADEK BASIN

- An inaccessible terrain
- Annual rainfall >10,000 mm
- Poor infrastructure

KYLLENG-PYNDENGSOHIONG URANIUM PROJECT, MAWTHABAH

Sandstone type tabular orebody Depth of mineralisation: 45 m

Dip: 3 – 5⁰

Openpit mining planned

CONCEPTUAL MINING SCHEME AT KPM PROJECT

SCHEMATIC FLOWSHEET

EXPLORATORY MINING AT BHIMA BASIN

- Fracture controlled orebody
- Hosted in Limestone and Granite
- 100 300m depth

Computerised 3-D model showing orebody and exploratory developments (under progress)

CHALLENGES AHEAD

SMALL LOW GRADE DEPOSITS

Constraints in locating large tonnage high grade uranium deposits in the country, may lead to dependence on exploiting more of low grade low to medium tonnage deposits.

Exploitation of uranium in small scale does not in any way reduce the inherent problems of uranium mining.

URANIUM TAILINGS MANAGEMENT

Uranium mill tailings impoundment in environment is a matter of public concern.

Production & processing of large quantity of ore results in generation of large volume of tailings.

Newer concepts like TTD System are under implementation to minimise the tailings pond area.

CHALLENGES AHEAD

RECLAMATION OF EXISTING TAILINGS PONDS

- •Remediation of existing ponds at Jaduguda Ecorestoration with suitable soil capping and vegetation.
- •Efficacy of microbial leaching of tailings and microbial modifiers being looked into.
- •Migration of contaminants into adjoining environment.

NEGATIVE PUBLIC PERCEPTION

- •Negative public perception about nuclear industry in general
- Negative perception about mining as a polluting industry
- •Exaggerated safety concerns regarding tailing ponds
- •Activists influence negative public opinion by spreading misinformation

CORPORATE SOCIAL RESPONSSIBILITY

