The IEA-R1 Research Reactor: 50 Years of Operating Experience and Utilization for Research, Teaching and Radioisotopes Production

R.N.Saxena

Research Reactor Center IPEN-CNEN/SP-Brazil

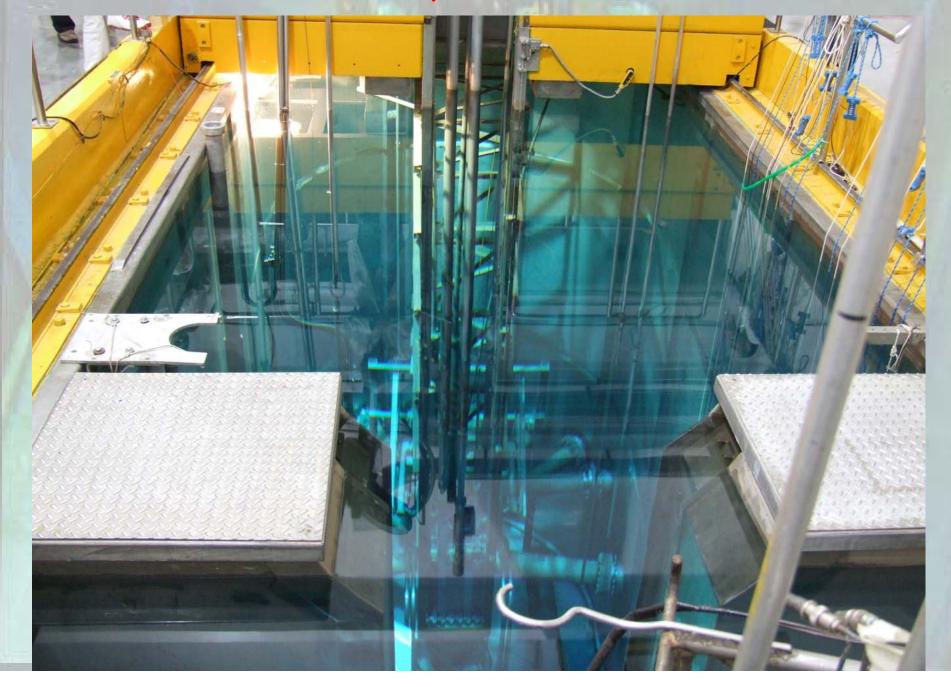
"International Conference on Research Reactors: Safe Management and Effective Utilization"

Sydney, Australia, 5-9 November 2007

Relevant Facility Background and Principal Areas of Utilization

Constructed by Babcock-Wilcox, IEA-R1 is a swimming pool type reactor, moderated and cooled by light water and uses graphite and beryllium reflectors

The Reactor was commissioned on September 16, 1957 and achieved its first criticality. The reactor is currently operated at 3.5MW on a 64h per week cycle.


The fuel elements with 20% enriched uranium (U_3O_8 -Al, 2.3g/cm³) and (U_3Si_2 -Al, 3.0g/cm³) are produced at IPEN.

Brazilian Research Reactors

	IEA-R1	IPR-R1	Argonaut	IPEN/MB-01
Criticality	1957	1960	1965	1988
Operator	IPEN-CNEN	CDTN-CNEN	IEN-CNEN	IPEN-CNEN
Location	São Paulo	Minas Gerais	Rio de Janeiro	São Paulo
Туре	Swmming Pool	Triga Mark-1	Argonaut	Critical Assembly
Power	2-5 MW	250 KW	500 W	100 W
Fuel Enrichment	20%	20%	20%	4.3%
Supplier	Babcock Wilcox	General Atomics	USDOE	IPEN

The IEA-R1 is the only research reactor in Brazil with substantial power level suitable for utilization in scientific research in physics, chemistry, biology and engineering as well as for producing some useful radioisotopes for medical and other applications

A View of the top floor of the Reactor

The Research Reactor Center - CRPq is responsible for the operation, maintenance and utilization of the IEA-R1 reactor

The Research Reactor Center has a three-fold mission

promoting basic and applied research in nuclear and neutron related sciences

 providing educational opportunities for students in these fields including Post-graduate and undergraduate teaching

 Providing services and applications resulting from the reactor utilization and radioisotopes production for medical and industrial applications

Major programs at CRPq

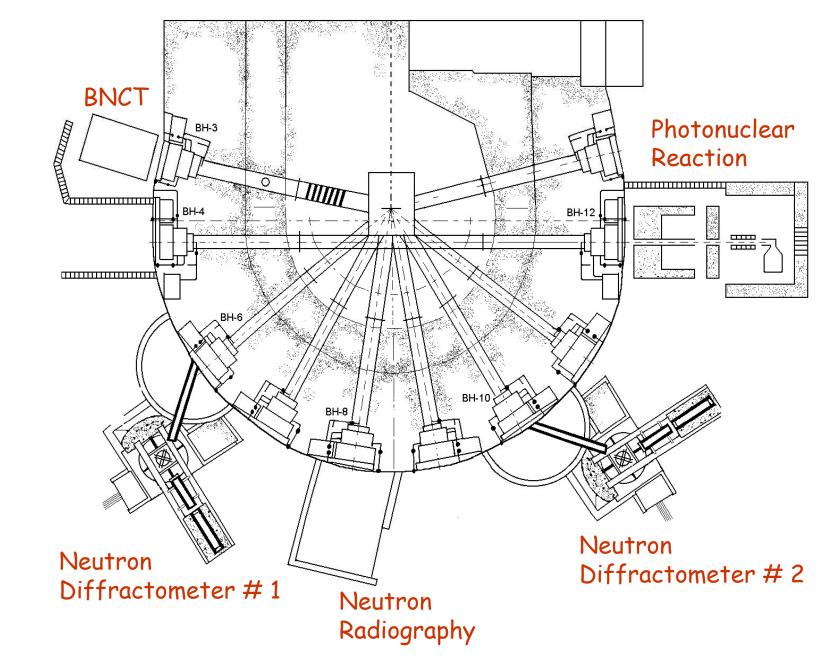
✓Nuclear and condensed matter Physics ✓ Neutron activation analysis Operation and utilization of reactor ✓Nuclear Metrology ✓ Under-graduate and post-graduate teaching ✓ Training of reactor operators Modernization of reactor

Research Staff Technologists Technicians Secretaries Total

Qualifications

Personnel

Ph.D. M.Sc. Reactor Supervisors Reactor Operators Engineers Resident Health Physics Group Supervisors Technicians


R&D activity at CRPq

Scientific programs at CRPq span several multidisciplinary, fundamental and applied research areas

Specific research programs include:

Nuclear structure study
Nuclear and neutron metrology
Neutron diffraction
Nuclear hyperfine interactions
Neutron activation analysis
Neutron radiography
Nuclear instrumentation

Neutron beam Utilization - 1st floor of the Reactor

Neutron Diffractometer

A major program to upgrade the neutron diffractometer installed at IEA-R1 research reactor was concluded. It includes:

✓ Stack of position sensitive detectors (PSD),

✓ A rotating oscillating collimator,

✓ An elastically bent silicon single crystal focusing monochromator

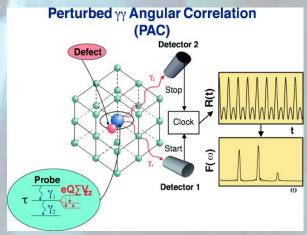
The PSD stack will permit simultaneous measurement of neutron intensity in an angular interval of 30 degrees. The monochromator will permit the choice of three different neutron wavelengths.

Final adjustments and tests of the diffractometer systems

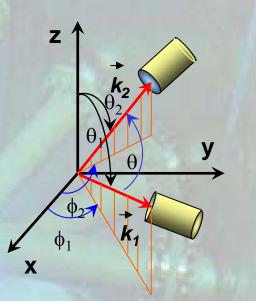
elastically bent silicon single crystal focusing monochromator.

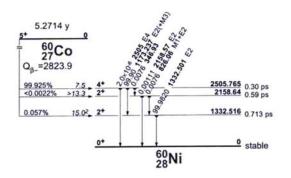
position sensitive detectors (PSD)

rotating oscillating collimator


Nuclear Hyperfine Interactions

perturbed $\gamma\gamma$ -angular correlation (PAC) using radioactive nuclear probes to study hyperfine interactions in solids


Electronic and Magnetic Properties of materials


Nuclear Structure Studies

γ - γ Angular correlation

High resolution gamma spectroscopy: γ - γ and β - γ angular correlation measurements following Radioactive decay of nuclei

Nuclear Decay Schemes

Most of the R&D programs have strong ties to universities, other national research institutes and laboratories.

CRPq takes its role very seriously as one of the major research reactor facility in the country providing educational opportunities to students in their programs related to nuclear sciences.

A large part of the research work has active participation of many graduate students, affiliated to the Reactor Center, working for their M.Sc. and Ph.D. degrees as well as some undergraduate students initiating scientific research.

Academic Activity

Students:

Ph.D. Program M.Sc. Program Post-Doc Under-graduate

Total

14 courses are offered by the CRPq staff members in the post-graduate program of IPEN every year.

Scientific Production (2005-2006)

Publications:

Scientific Journals(Refereed) Conference Proceedings (full Papers)

Conference Contributions:

International National Workshops

Theses concluded:

M.Sc. Ph.D.

09 06

(Research Reactor Center) Budget-(2006)

 Government funds: Reactor Operation Reactor Modernization Research Program

Extraordinary funds:* Reactor Modernization (*Electronuclear)

•

 IAEA -TC Project: Reactor Modernization

 Research Grants: (FAPESP, CNPq, IAEA, CAPES) US\$ 50.000 US\$ 250.000 US\$ 35.000

US\$ 450.000

US\$ 123.000

US\$ 200.000

Total

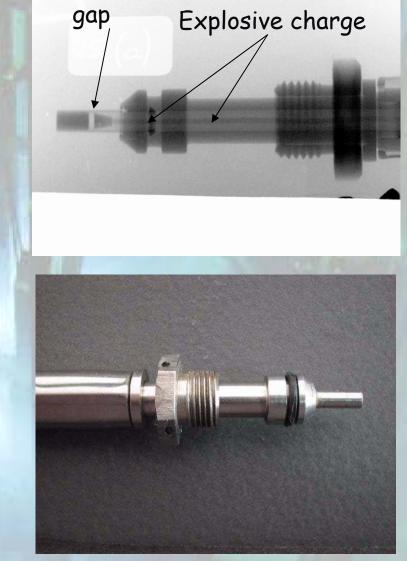
US\$1.108.000

Some of the products and services offered by our center find their way to:

✓ petroleum industry,
✓ aeronautical and space industry,
✓ medical clinics and hospitals,
✓ semiconductor industry,
✓ environmental agencies,
✓ universities and research institutions.

We produce special radioisotopes such as:


⁴¹Ar and ⁸²Br for industrial process inspection, ¹⁹²Ir and ¹⁹⁸Au radiation sources used for brachytherapy,
¹⁵³Sm(EDTMP) for pain palliation in bone metastases, calibrated gamma sources of ¹³³Ba, ¹³⁷Cs, ⁵⁷Co, ⁶⁰Co,
²⁴¹Am and ¹⁵²Eu for clinics and hospitals practicing nuclear medicine and research laboratories


We offer regular services of nondestructive testing by real-time neutron radiography, multi-element trace analysis by NAA, neutron irradiation of silicon crystals for doping with phosphorus and miscellaneous neutron irradiation

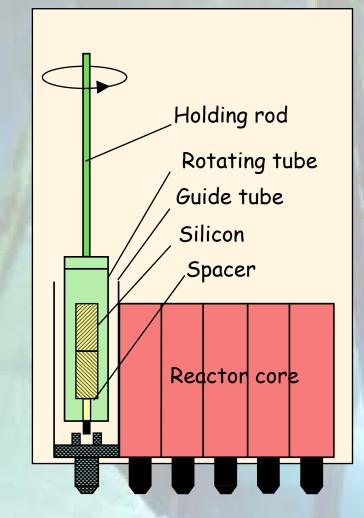
Real time neutron radiography

Brazilian currency note

Pyrotechnic device

Neutron Activation Analysis

neutron activation analysis is applied to the fields of health, nutrition, agriculture, environment, geology and industry.



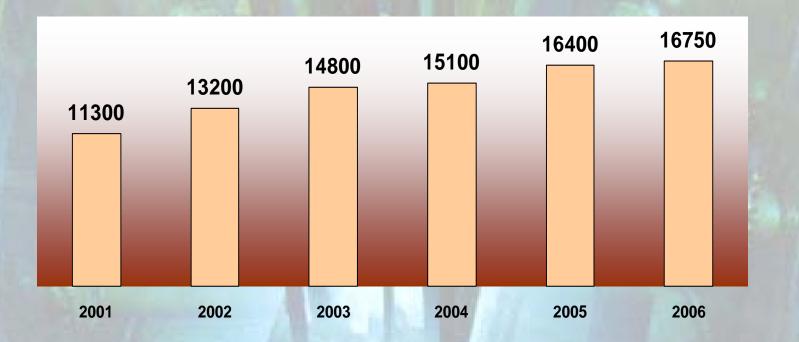
Nuclear and neutron Metrology

The laboratory produces and commercializes calibrated radioactive sources for use in industry, hospitals and clinics.

Silicon Irradiation

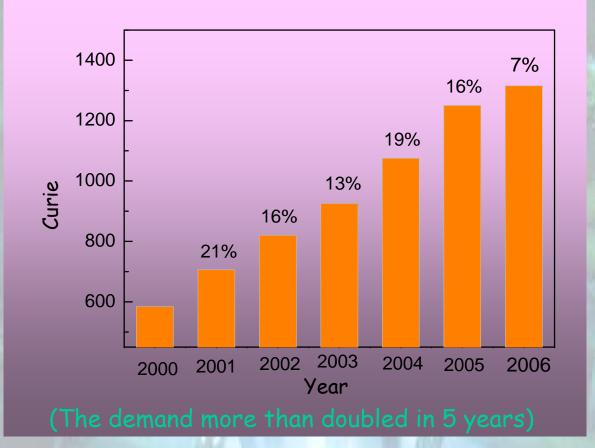
Silicon Irradiation Rig

Crystal diameter: Crystal length: Target Resitivity: Annual Capacity: 5 inch 50cm 30 Ohm.cm 1200kg


Radioisotope production at IPEN

In the early sixties IPEN started producing ¹³¹I and several other radioisotopes such as ³²P, ¹⁹⁸Au, ²⁴Na, ³⁵S, and ⁵¹Cr as well labeled compounds for medical use

Due to increasing demand these radioisotopes started to be imported which were then processed and distributed to the local medical centers.


Since 1980 IPEN produces ⁹⁹Mo-^{99m}Tc generator kits from the fission ⁹⁹Mo imported from Canada

Number of ^{99m}Tc generators produced and commercialized

^{99m}Tc generators with individual kit activities between 250mCi and 2000mCi are produced and distributed to more than 260 hospitals and clinics throughout the country, benefiting more than 2.500.000 patients

¹³¹I (Solution form)

More than 350 Ci Of ¹³¹I in the form of capsules were also produced and distributed in 2006. Demand for this product is increasing at a rate of more than 20% each year In addition to ^{99m}Tc generators, IPEN also produces and distributes radiopharmaceuticals based on ¹³¹I (1700Ci), ⁵¹Cr(1Ci), ³²P(3Ci), ¹⁵³Sm(36Ci), and sealed sources of ¹²⁵I and ¹⁹²Ir seeds for Braquetherary

sealed ¹⁹²Ir (12000Ci) sources are produced for industrial gammagraphy (all figures of 2006)

The reactor produced radioisotopes and some of the cyclotron produced radioisotopes such as ⁶⁷Ga, ²⁰¹Tl and ¹⁸F used in nuclear medicine amount to receipts, from sales of the order of

24 million US\$

Radioisotopes produced with IEA-R1 Reactor

¹³¹I ~ 25Ci per week (70% of the demand)

¹⁵³Sm and ¹⁹²Ir (for Braquetherapy) 100% of demand

Viable commercial production of ⁹⁹Mo will start as soon as the power of the reactor is raised to 5MW

Reactor modernization program

The reactor is ISO-9001:2000 certified since 2002 for the scope

"Reactor operation and irradiation services"

During the last several years a concerted effort was made to refurbish the old components and systems of the reactor, particularly those related with the reactor safety improvement, in order to upgrade the reactor power

Primary Objective was to enhance the utilization of IEA-R1 research reactor to produce primary radioisotopes, such as ⁹⁹Mo and ¹³¹I, among several others, used in nuclear medicine in Brazil, by operating the reactor at 5 MW on a schedule of 120 hours/week continuous operation

Some of the recent implementations

✓New water treatment and purification system-2004/2005

✓ Replacement of reactor control and safety rods-2004/2005

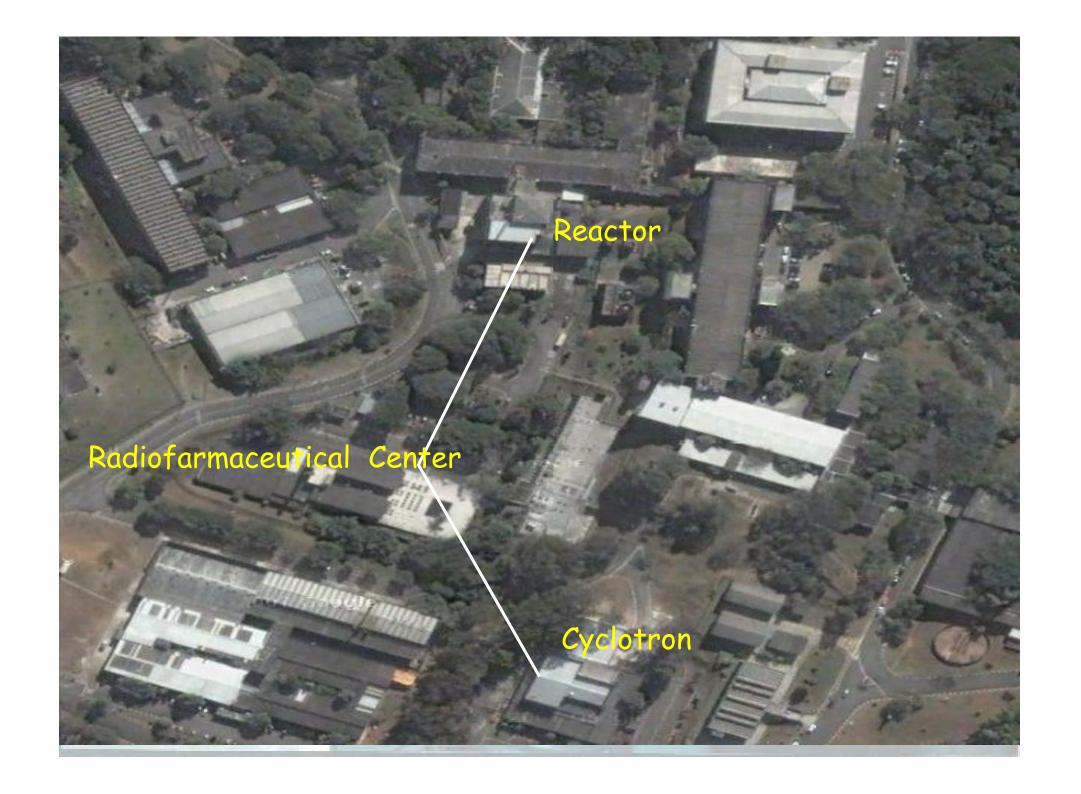
✓New primary heat exchanger-2006/2007

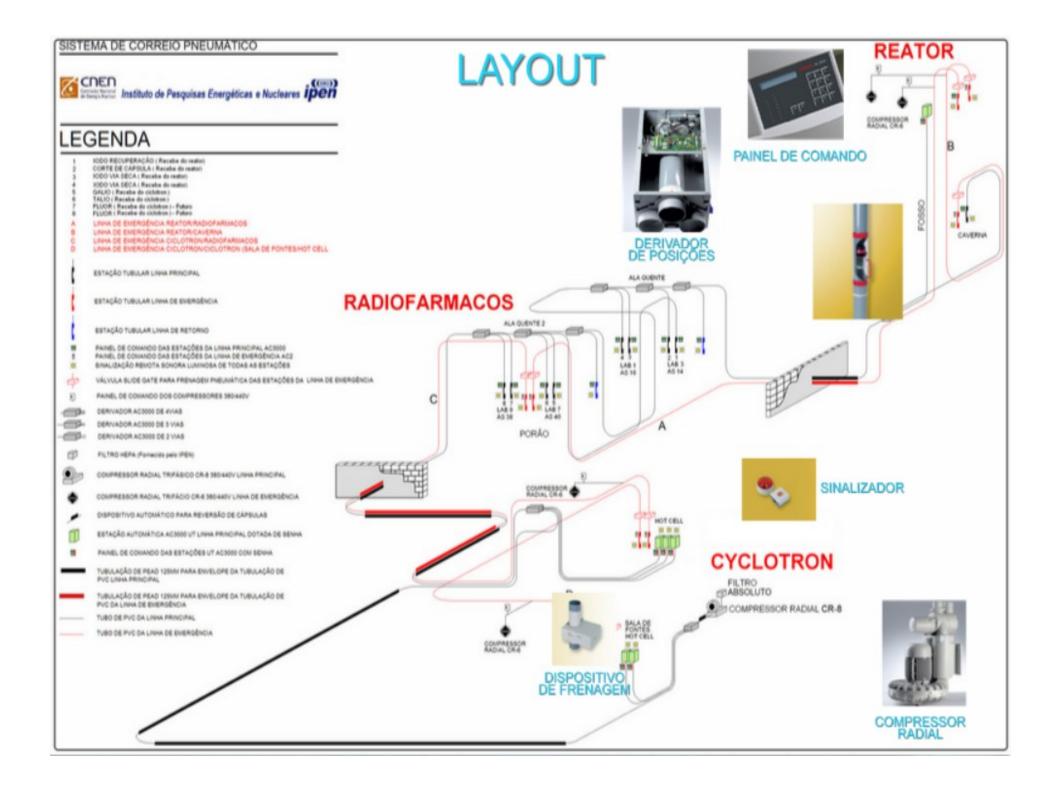
✓Installation of a new rabbit system for short irradiations in the reactor core-2007

✓ Replacement of several radiation monitor and detectors-2006/2007

Pneumatic system to transfer reactor irradiated targets to processing area-2007

New reactor pool water treatment system





Pneumatic Irradiation system Constructed at IPEN

Other infrastructure improvement

Modernization of reactor fuel element Fabrication facility to upgrade the production capacity to 15-18 U₃Si₂ (3.0 g/cm³) type fuel elements per year

Optimization of radiochemical facilities to process ⁹⁹Mo using gel-process

Implantation of an effective project for spent fuel management and storage

(prototype of a storage cask under construction)

IAEA-Technical cooperation Project BRA/04/0506

"Modernization of the IEA-R1 research reactor to secure safe and sustainable operation for radioisotopes production"

Project concluded on 31/12/2006

Funds Aproved by IAEA (US\$)			
	(2005)	(200	6) Total
Experts(E)	14,000	14,000	0 28,000
Fellowships(FE)	13,000	13,000	26,000
Scient.Visits(SV)	25,000	25,00	0 50,000
Equipment(EQ)	60,000	70,00	0 130,000
		Total: 234,000	
Funds Effectively Used (US\$)			
Equipment(EQ)			178,000
Experts (2), FE (8), SV (4)			62,000
		Total	240,000

Continuous Vibration Monitoring System

Work station for Neurtonic and thermal hydraulic Calculations

Lead Glass Window for Hot Cell

Self-Powered detector for Neutron flux Measurements

Ionization Chambers

5

Inspection and Monitoring programs

Continuous Vibration Monitoring System (CVMS)

The rotating machinery in the IEA-R1 reactor system is primarily the water circulating pumps. A continuous vibration monitoring system has been installed.

This will provide accelerometer data to a central processing unit that will monitor the changes in the vibration levels of the pump-motor system.

Defects such as imbalance, misalignment, looseness, and bearing faults can be detected before a catastrophic failure occurs. Thus, incipient fault detection and diagnosis of rotating machinery is an important feature of this upgrade.

Example of Vibration Monitoring of Rotating Machinery

Visual Inspection of Fuel Elements

Underwater camera is used to inspect fuel elements to detect signs of oxidation or corrosion of fuel plates

Images of fuel elements

Sipping test

Sipping analysis is performed if there is an indication of fission product release in the pool water

The suspected fuel element is enclosed in an aluminum tube and water is percolated through it for several hours

A sample of this water is collected and analyzed by high resolution gamma spectroscopy using HPGe detector to detect fission product nuclides Safety Culture Enhancement and ALARA Programs Under Implantation

Conclusions/Lessons Learned

✓Our experience has shown that the modernization and refurbishment program in small research reactors must be a continuous activity

✓ Small steps should be taken to improve the performance of the reactor with small budgets and shorter shut down periods rather than very extensive refurbishment programs requiring large sums and long shutdown times

✓In both cases however a very well planned and skilful management of these activities are required ✓ Development of a strategic plan for the effective utilization of the research reactor is an essential step

✓ Continuous efforts should be made to maintain the reactor utilization index as high as possible

 Implantation of an integrated management system including quality assurance, safety culture and environmental consciousness is essential for reactor operation, maintenance and irradiation services This can help a great deal in elevating the self esteem and a sense of collective responsibility in the reactor staff.

✓ This ultimately reduces the necessity of unplanned maintenances and refurbishments in the reactor systems and components.

 Planning, efficient management and continuous improvement are key words in a quality management system.

✓ The production of radioisotopes for medical and industrial application is essential but reactor utilization in academic and applied research and education are equally important particularly in developing countries

Thank you for your kind attention