Development of a New Thermo-chemical and Electrolytic Hybrid Hydrogen Production Process for Sodium Cooled FBR

Status and Future Plan

IAEA International Conference on Non-Electric Applications of Nuclear Power, April 2007
O-Arai, Japan

Toshio NAKAGIRI, Toshihide TAKAI, Tai ASAYAMA, and Yoshiyuki INAGAKI

Japan Atomic Energy Agency
Outline

- Background
- Principle of the new hybrid hydrogen production process
- Current status of R&D
- Future plan
In “Feasibility study on Commercialized Fast Breeder Reactor (FBR) Cycle Systems” of JAEA, a concept of a multi-purpose (Electricity supply, Hydrogen Production, etc.) small sized reactor has been studied.

Requirements for hydrogen production system of FBR
- Maximum temperature : 500-550 deg-C
- Thermal efficiency : higher than water electrolysis
- Hydrogen production from water : No use of fossil fuel, no CO₂ emission.
<table>
<thead>
<tr>
<th>Resource</th>
<th>Method</th>
<th>Proposed Tech.</th>
<th>Present Status</th>
<th>Features & Issues</th>
</tr>
</thead>
</table>
| Water | Electrolysis | • Alkaline Water Electrolysis
• SPEWE’
• HTE’ | Commercialized R&D Stage | • Mature Tech.
• Low thermal efficiency (~36% for FBR) |
| | Thermochemical Cycle | • I-S method
• UT-3 method
• W.H. method, etc | R&D Stage | • Higher thermal efficiency (~50%)
• High temperature heat source
• Material corrosion |
| Fossil Fuels | Steam Reforming | • Steam Reforming of Natural Gas
• SER’ Process
• Membrane Reformer | Commercialized Demonstration Stage | • Excellent thermal efficiency (70%~)
• High plant construction const; SER & MR
• CO₂ emission |

SPEWE: Solid Polymer Electrolyte Water Electrolysis, HTE: High Temperature Electrolysis, SER: Sorption Enhanced Reaction

Development of a Lower Temperature Thermochemical Cycle
Principle of HHLT

HHLT (thermo-chemical and electrolytic Hybrid Hydrogen process in Lower Temperature range)

- \(2\text{H}_2\text{O} + \text{SO}_2 \rightarrow \text{H}_2\text{SO}_4 + \text{H}_2\) \(<100\) deg-C (electrolysis: 0.17v) [1]
- \(\text{H}_2\text{SO}_4 \rightarrow \text{H}_2\text{O} + \text{SO}_3\) 400 deg-C (thermal decomposition) [2]
- \(\text{SO}_3 \rightarrow \text{SO}_2 + \frac{1}{2}\text{O}_2\) 500-550 deg-C (electrolysis: 0.13v) [3]

Westinghouse process

- \(\text{SO}_3 \rightarrow \text{SO}_2 + \frac{1}{2}\text{O}_2\) \(>800\) deg-C (thermal decomposition) [3]

- The hybrid process consists of \(\text{H}_2\text{SO}_4\) synthesis and decomposition reactions. (Based on “Westinghouse process”)
- Maximum operation temperature is about 500-550 deg-C.
- Hydrogen and oxygen are produced from water.
- **Splitting voltage of SO$_3$** is 0.13V at 500°C.

![Graphs showing splitting voltage and thermal decomposition fraction of SO$_3$.](image)

- Thermal decomposition fraction of SO$_3$
- Splitting voltages of H$_2$O and SO$_3$
Steps of H₂ Energy Introduction & of Hybrid Tech. Development

<table>
<thead>
<tr>
<th>Year</th>
<th>Japan</th>
<th>US</th>
<th>EU</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>Verification Stage</td>
<td>Introduction Stage</td>
<td>Tech. Development & Verification Stage</td>
</tr>
<tr>
<td>2010</td>
<td>Introduction Stage</td>
<td>Wide-Use Stage</td>
<td>Tech. Development & Verification Stage</td>
</tr>
<tr>
<td>2020</td>
<td>Wide-Use Stage</td>
<td>Hydrogen Energy Society</td>
<td>Wide-Use Stage</td>
</tr>
<tr>
<td>2030</td>
<td></td>
<td></td>
<td>Hydrogen Energy Society</td>
</tr>
</tbody>
</table>

Japan
- FCV: 50k cars (Bus)
- H₂ Demand: 430M Nm³/y

US
- Tech. Development & Verification Stage

EU
- Tech. Development & Verification Stage

TCE-Hybrid Tech.
- JNC R&D: 60ml/h, 1 L/h, 100 L/h, 100~1,000 m³/h
- JAEA R&D: FBR Demonstration Plant (Japan), Commercialized FBR

H₂ Demand
- JNC R&D: 430M Nm³/y
- JAEA R&D: 6.5B Nm³/y
- JAEA R&D: 17B Nm³/y

※ Ref. FUKUDA, HTTR Seminar (2004)
Conceptual FBR-Hydrogen Plant Design

Hydrogen generation rate of 47000Nm³/h
The experimental apparatus for 1NL/h hydrogen production has been developed and an experiment was performed.
- To evaluate hydrogen production efficiency
- To extract technical problems to develop 100NL/h-h₂ production apparatus.

Development of higher performance electrolysis cells and structural materials for H₂SO₄ corrosion have been performed.
Development of the experimental apparatus for 1NL/h hydrogen production

Internal structure of SO₂ electrolysis cell

SO₂ electrolysis cell (for oxygen generation)

Sulfuric acid heater

SO₂ solution electrolysis cell (for hydrogen generation)

SO₂ absorber

Photo of the experimental apparatus

Experimental apparatus for 1NL/h H₂ production
Experimental conditions of the hydrogen production experiment

Experimental conditions

<table>
<thead>
<tr>
<th>Item</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>H$_2$SO$_4$ vaporizer Temperature</td>
<td>600-700 deg-C</td>
</tr>
<tr>
<td>SO$_3$ electrolysis cell Temperature</td>
<td>600 deg-C ->550 deg-C</td>
</tr>
<tr>
<td></td>
<td>0.85V</td>
</tr>
<tr>
<td>SO$_2$ solution electrolysis cell</td>
<td>8 deg-C</td>
</tr>
<tr>
<td></td>
<td>1.2V-1.1V</td>
</tr>
<tr>
<td>H$_2$SO$_4$ concentration</td>
<td>50wt%</td>
</tr>
<tr>
<td>H$_2$SO$_4$ flow rate</td>
<td>2ml/min</td>
</tr>
</tbody>
</table>

Target value

<table>
<thead>
<tr>
<th>Item</th>
<th>condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>H$_2$ production rate</td>
<td>0.5NL/h</td>
</tr>
<tr>
<td>(current value: 1.2A)</td>
<td></td>
</tr>
<tr>
<td>O$_2$ production rate</td>
<td>0.25NL/h</td>
</tr>
<tr>
<td>(current value: 1.2A)</td>
<td></td>
</tr>
<tr>
<td>Experimental duration</td>
<td>1-several hours</td>
</tr>
</tbody>
</table>
Experimental result

- \(\text{H}_2 \) production rate: 0.42NL/h, \(\text{O}_2 \) production rate: 0.21NL/h

Measured cell current in the hydrogen production experiment
Evaluated efficiency

\[\eta = \frac{H_{\text{HHV}} \cdot M_x}{P + Q} \quad (1) \]

- \(M_x \): amount of generated \(X \) gas (mol, \(X = \)hydrogen, oxygen)
 - \(M_x = \frac{\sum I_x \cdot f}{96485 \cdot \text{ex}} \)
 - \(I_x \): cell current of \(X \) gas (A)
 - \(f \): data sampling period (20 sec)
 - \(\text{ex} \): number of electron (2 for hydrogen molecule, 4 for oxygen molecule)
- \(H_{\text{HHV}} \): higher heat value of hydrogen (285.8 kJ/mol)
- \(P \): electricity supplied to both electrolysis cell (kJ)
 - measured by potentiostats (\(\text{SO}_3 \) electrolysis & \(\text{SO}_2 \) solution electrolysis)
- \(Q \): heat from heat source (kJ)
 - No heat loss was considered
 - equilibrium composition of gas phase was calculated by MALT-II & GEM

Evaluated thermal efficiency was 2.1%.
Influence of efficiency of SO$_3$ electrolysis

Relationship between H$_2$ production efficiency and SO$_3$ electrolysis efficiency
A hydrogen production experiment was performed using the 1NL/h-h_2 level apparatus.
- hydrogen production efficiency will be evaluated as about 2%. Efficiency of the electrolysis cells must be increased to obtain higher hydrogen production efficiency.
- durability of the apparatus must be improved.
SO₃ electrolysis cell using small YSZ tube (6mm in diameter, 100mm in length and 0.5mm in thickness) was manufactured.
PEFC (Polymer Electrolyte Fuel Cell) was modified for hydrogen production supplying SO₂ gas and H₂O. Investigation on SO₂ cross-over behavior through some cation exchange membranes has been performed.
Future Plan

(1) SO₃ electrolysis cell (O₂ production)

(2) SO₂ solution electrolysis cell (H₂ production)

(3) H₂ production experiment

(4) H₂ storage & transportation

Prospect of practical use

Prototype Plant
(100-1000Nm³/h)
The experimental apparatus for 1NL/h-h$_2$ production by the hybrid sulfur process was developed and technical problems were extracted from the hydrogen production experiment performed in 2006.

Development of electrolysis cells will be continued for a few years, then development of 100NL/h-h$_2$ apparatus will be started.