Verification Tests performed for Development of an Integral Type Reactor

 $E \models mc^2$

April 18 2007

Si-Hwan Kim

SMART Desalination Plant

 $E \neq mc$

🐼 KAERI

SMART Design

DESIGN CONCEPT

F = mc

Experiments for the SMART Program E find

- **Integral Effect Tests: VISTA**
- **Generate Effect Test**
 - Core and Steam Generator Flow Distribution Test
 - **•** Two-phase Critical Flow with Nitrogen Gas Test
 - Critical Heat Flux Test
 - Flow Instability Test
 - **•** Thermal Mixing and Heat Transfer Test
 - Fuel Assembly Pressure Drop Test
 - Major Components (MCP,CEDM,SG) Performance Test

Integral Test

VISTA Facility

- ▶ 1/1-height, 1/96-volume of Prototypic SMART, SMART-P
 - ✓ Design pressure/temperature : 17.2 MPa/350 °C
 - ✓ Nominal core heater power : 682 kW (Max. 819 kW)
- Purposes
 - ✓ Overall T-H performance during normal operation (start-up, heat-up, cooldown)
 - ✓ PRHR test during natural circulation
 - ✓ Investigation for accident Scenarios
 - ✓ Database for design optimization of SMART reactor and code validation

VISTA : Experimental Verification by Integral Simulation of Transients and Accidents

SMART vs. VISTA Design

 $E \neq mc^2$

Thermal right autic Denavior during

LOFA

 $F \neq mc$

Thermal Hydraulic Behavior during CEA Ejection Accident

Natural Circulation Analysis by MARS 3.0

MARS 3.0 code

- I-D and 3-D system analysis code for thermal hydraulic analysis of the light water reactor transients
- Developed by consolidating and restructuring the RELAP5/MOD3.2 and COBRA-TF codes
- SMART specific models
 - ✓ Helically coiled SG
 - ✓ Pressurizer with non-condensable gas
- Performed natural circulation analysis
 - ✓ Comparison of RELAP5/MOD3 results
 - ✓ Data of VISTA experiment

Natural Circulation Analysis by MARS 3.0

• Primary Pressure

• Secondary Temperature

Two-Phase Critical Flow with Non-Condensable Gas at High Pressure Conditions

- □ Some possibility of SBLOCA at the top of SMART reactor
- Two-phase critical flow experiments in the presence of nitrogen gas are performed at KAERI using CFTL

Critical Flow Test Loop (CFTL)

-Short pipe (20 mm ID, 300 mm length) at sub-cooled & saturated conditions -Small-diameter pipe (11 mm ID, 1000 mm length) at sub-cooled & saturated conditions

Critical Flow Rate - Correlation

- □ An empirical correlation is developed as follows:
 - $G_{n2} / G_{water} = 0.378 + 0.600 \cdot e^{-(Q_{n2} / Q_{water})/0.195}$
- □ Applicable ranges:
 - **Pressure Range: 3.7 ~ 10.5 (Mpa)**
 - Water Temperature: sub-cooling to saturated condition
 - ▶ Non Condensable Gas flow rate: 0.008 ~ 0.22 (kg/s)

□ The standard deviation of the predictions of the present empirical correlation from the experimental values is 7.1 %.

Water CHF Test

<u>Technical Data</u>

- Max. press. and temp.: 16 MPa and 347 °C
- Flow rate: 3 kg/s
- Test section power: 450 kW DC, 970 kW AC
- Working fluid: De-ionized water

E = mc

Freon CHF Test

CHF Correlation

 $E \neq mc$

Design Verification Tests

Tests

- High Temperature and High Pressure Test
- Heat Transfer test for Pressurizer
- Material Corrosion Test

Material Corrosion Test

High Temperature and High Pressure Test

Heat Transfer test for Pressurizer

🕙 KAERI

Major Components Development

Main Coolant Pump

□ MCP Performance Test

Steam Generator

CEDM

CEDM Performance Test

Summary

- □ SMART is a safety enhanced, economically viable and environmental friendly nuclear power plant for power generation and seawater desalination.
- The SMART system adopted commercial reactor design technologies as well as innovative designs and inherent safety features.
- SMART verification tests including comprehensive experiments was conducted to demonstrate overall performance of the SMART system.
- Advanced design features implemented into the
 SMART system has been proven through various tests and experiments.

