Canadian Advances in Thermochemical H₂ Production in the Context of Conventional Electrolysis

Alistair I. Miller
Romney B. Duffey
Sam Suppiah

IAEA Meeting, Oarai, Japan

2007 April
Outline

The market for hydrogen

SMR vs LTE

The GIF context

AECL work on sulphur thermochemical cycles

Collaboration with USDOE on copper chloride cycles
Where will the demand be?

- Fuel for road vehicles?
 - Later perhaps but uncertain
 - Depends on battery vs fuel cell development
- More likely for larger vehicles (trains, ships)
- Big market is for upgrading petroleum
 - Exists and is growing rapidly
 - Especially in the oil sands developments in northern Alberta
 - Needs 3 to 5 kg H_2/bbl
 - Expect over 2 million bbl/d by 2015
 - 1 GWe = 160 000 bbl/d
How will H_2 be made?

- Conventionally come from natural gas by SMR
 - Cost has risen fast
 - Realistic to base on oil:gas at 6:1
 - Add 70 $/t CO_2$
 - Add 3% leakage of CH$_4$ from well to end use
 - Supply of natural gas is uncertain
 - All Mackenzie pipeline output could go to oil sands upgrading

- Need a new way
 - High-temperature thermochemical?
 - High-temperature electrolysis?
 - Conventional low-temperature electrolysis?
LTE will be available much sooner

- Make it using Generation III+ reactors
 - Could be deployed by 2015
- Key is to produce H_2 with off-peak electricity
 - Preferably with variable-current cells
 - Needs large-scale storage
 - In salt caverns

⇒ Alberta case
- 550 $/kW cells
- 5000 $/t storage
- Applying real-time Alberta power prices
And later?
Within the GenIV, Canada focuses on SCWR with crosslink to VHTR

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Spectrum</th>
<th>Fuel cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>SFR Sodium Cooled Fast Reactor</td>
<td>Fast</td>
<td>Closed</td>
</tr>
<tr>
<td>LFR Lead Alloy Cooled Reactor</td>
<td>Fast</td>
<td>Closed</td>
</tr>
<tr>
<td>GFR Gas Cooled Fast Reactor</td>
<td>Fast</td>
<td>Closed</td>
</tr>
<tr>
<td>VHTR Very High Temperature Reactor</td>
<td>Thermal</td>
<td>Once-through</td>
</tr>
<tr>
<td>SCWR Supercritical Water Cooled Reactor</td>
<td>Th. & F.</td>
<td>Once-t. & Closed</td>
</tr>
<tr>
<td>MSR Molten Salt Reactor</td>
<td>Thermal</td>
<td>Closed</td>
</tr>
</tbody>
</table>
CANDU Evolution

Current Generation CANDU

• Operating Feedback
• Market Pull
• Technology Push

Advanced CANDU Reactor

• Improved Economics
• Enhanced Safety
• Enhanced Operability

<5 years

Product Evolution

CANDU X (SCWR)

20+ years

Pg 8
CANDU SCWR Concept

• Started in 1994 as Candu X Program
• Establish the design limits and ultimate potential
• Main CANDU features are retained.
 • Horizontal modular channels.
 • Heavy water moderator.
• Supercritical light water coolant (higher efficiency).
• Advanced fuel channel design (internal insulation without calandria tube).
• Options systematically studied
 • Mark 1: indirect cycle $T_{\text{out}} \sim 400^\circ \text{C}$ set by existing Zr
 • Mark 2: direct cycle $T_{\text{out}} \sim 600^\circ \text{C}$ set by existing turbine
 • Mark3: multiple cycle $T_{\text{out}} > 850^\circ \text{C}$ set by known materials
Thermochemical Work in Canada
In collaboration within the GIF and through I-NERI agreements with the USDOE
The H_2SO_4 Side of I/S and other S Cycles

- $\text{H}_2\text{SO}_4 \rightarrow \text{SO}_3 + \text{H}_2\text{O}$
 - Majority of energy; lower temperature ($< 500^\circ\text{C}$)

- $\text{SO}_3 \rightarrow \text{SO}_2 + \frac{1}{2}\text{O}_2$
 - Minority of energy; higher temperature ($> 700^\circ\text{C}$)
 - Could avoid a high temperature reactor by providing direct electric heating of a substrate on which catalyst deposited
 - Work so far on selecting catalysts
Assessing catalysts for SO₂ decomp.

Fe catalyst

Pt catalyst

A metal (textured Inconel 800) sheet coated with catalyst for SO₃ decomposition
Copper chloride cycles

- Work led by USDOE at Argonne (Michelle Lewis)
- AECL is currently focused on the electrochemical step

<table>
<thead>
<tr>
<th>#</th>
<th>Reaction Stoichiometry</th>
<th>Temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2Cu + 2HCl(g) → 2 CuCl(l) + H₂(g)</td>
<td>425-450</td>
</tr>
<tr>
<td>2</td>
<td>4CuCl(s) → 2CuCl₂(a) + 2Cu</td>
<td><100</td>
</tr>
<tr>
<td>3</td>
<td>2CuCl₂(s) + H₂O(g) → Cu₂OCl₂ (s) + 2HCl(g)</td>
<td>300-375</td>
</tr>
<tr>
<td>4</td>
<td>Cu₂OCl₂ (s) → 2CuCl(l) + ½O₂(g)</td>
<td>450-530</td>
</tr>
</tbody>
</table>

- Or a variant on reaction #2: 2 CuCl + 2 HCl → 2 CuCl₂ + H₂
 - Avoids solid phase
 - Preliminary testing yields H₂ from both reactions at ~ 0.65 V
NRTEE + large nuclear deployment: 75% reduction ⇒

+9 GW(e) = +450 GW worldwide

As in NRTEE: ⇐ 50% reduction

+60 GW(e) = +5000 GW worldwide