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MHR Design Features Are Well Suited for Significant

Expansion of Nuclear Energy

= Passive Safety

— No active safety systems
required

— No evacuation plans required
e Competitive ECconomics
< High Thermal Efficiency
= Siting Flexibility

— Lower waste heat

rejection, reduced water
cooling requirements

e High-Temperature Capability
with Flexible Energy Outputs
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One Reactor Design Can Use Multiple Fuels for Multiple

Applications
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The MHR is a Passively Safe Design

Passive Safety Features 1800

< Ceramic, coated-particle 1600
fuel
— Maintains integrity during
loss-of-coolant accident
< Annular graphite core with
high heat capacity
— Helps to limit temperature
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e Low power density
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and accidents
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Hydrogen Plant Will Not Impact Passive

Safety

= Potential Licensing issue is co-
location of MHR and
Hydrogen Plant

— Passive safety of MHR allows
co-location

— Earthen berm provides
defense-in-depth
= Other reactors located in W | “ Modular Helium
close proximity to hazardous Rk ' Sl
chemical plants and
transportation routes

— NRC allows risk-based Intermediate
Heat Exchanger
approach
— INL recommends 60 to 100 m Primary Coolant
separation distance Circulator

— JAEA studies also support
close separation distance
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The GT-MHR Produces Electricity Economically with

High Efficiency

< MHR coupled to a direct- PCS MHR
cycle Brayton power- ) o conirol
conversion system

= 600 MW(t), 102 column, Annular
annular core, prismatic Core

blocks

= 48% thermal efficiency
with 850°C Outlet
Temperature

= |nstalled capital costs of
approximately
$1000/kW(e)

= Busbar electricity
generation costs of
approximately 3.1 cents
per kW(e)-h.
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H2-MHR Can Produce Hydrogen with High Efficiency

MHR Coupled to Thermochemical
Water Splitting (Sulfur-lodine
Process)

MHR Coupled to High-
Temperature Electrolysis
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SI-Based H2-MHR Uses IHX to Interface MHR with

Hydrogen Production System

IHX Design
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Annual H, Production (4-module plant): 3.68 x 10° metric tons

Hydrogen Production Efficiency: 45.0% (based on HHV of H,)

Product H, Pressure: 4 MPa
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HTE-Based H2-MHR Generates Both Electricity and High-

Temperature Steam to Drive Solid-Oxide Electrolyzer Modules

Electricity |7
321 kgs ) SOE Module Concept
590°C System 2 Hydrogen
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Annual H, Production (4-module plant): 2.68 x 105 metric tons developing
tubular-cell

Hydrogen Production Efficiency: 55.8% (based on HHV of H,)
Product H, Pressure: 4.95 MPa
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Nth-of-a-Kind Hydrogen Production Costs are Approximately

$2/kg for both SI-Based and HTE-Based Plants

SI-Based Plant HTE-Based Plant

Total Hydrogen Production Cost =$1.97/kg Total Hydrogen Production Cost = $1.92/kg

@ MHR Plant Capital Charges (24.9%) @ S| Plant Capital Charges (18.6%) @ MHR Plant Capital Charges (34.8%) m HTE Plant Capital Charges (28.3%)

O MHR Plant O&M Costs (5.2%) O S| Plant O&M Costs (10.6%) 0O MHR Plant O&M Costs (7.3%) O HTE Plant O&M Costs (15.8%)

m Nuclear Fuel Costs (9.8%) @ Electricity Costs (30.9%) m Nuclear Fuel Costs (13.8%)
Electricity costs result mostly from SOE module unit costs assumed to be
pumping process fluids in the $500/kW(e). If module unit costs are
hydrogen plant (not from pumping increased to $1000/kW(e), hydrogen
helium). Efforts are being made to production cost increased to
optimize the flow sheets to reduce $2.52/kg.
pumping requirements.
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Nuclear Hydrogen Production Costs Compare

Favorably with Steam-Methane Reforming
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Economic comparisons are especially favorable if carbon
dioxide penalties and oxygen credits are taken into account.
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VHTR Can Provide a Wide Variety of Energy Outputs

Coal Gasification

Electricity Natural

— Gas

Process Heat

Hydrogen

>
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GT-MHRs and H2-MHRs Can Be Deployed with Advanced Fuel

Cycles to Address Spent Fuel Management and Sustainabillity Issues

MHRs can be used to process legacy LWR spent fuel

Successful Deep-Burn

Deep Burn using MHRs Irradiation of Coated-
fully fueled with TRU Particle Pu-Fuel

Waste accumulation .
75 kgTRU /GWe-yr | P”kx'_‘i_e_ _('fuol-ﬁf{) -
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e Y,
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/\ LWR Spent Fuel

TRU
UREX .
747,000 MW-days/tonne

Y Cicai
Fission Products ~0506 239py Transmuted at
Peach Bottom |

Residual radioactivity is contained by ceramic
coatings over geologic time scales
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MHRs Can Be Deployed Using a Self-Cleaning Fuel

Cycle to Relieve Repository Burdens

URANIUM

Waste accumulation:
35 kgTRU /GWe-yr
8 times less than
present LWRs

Pu, Transuranics

DB-TRISO Fas

Sustainability: 200 — 300 years in U.S.
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FBR/VHTR System Deployment Provides Sustainability,

Proliferation Resistance, and Energy Flexibility
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Long-term sustainability for resource-deficient countries (e.g., Japan)

JAEA/GA jointly investigating FBR/VHTR deployment scenarios in Japan.
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Conclusions

« MHR design features make it an outstanding choice
for future deployment of nuclear energy

— Passive safety
— High-temperature capability
— High thermal efficiency, flexible siting
— Flexible fuel cycles and energy outputs
< MHR deployment supports significant, sustainable
expansion of nuclear energy

— Better utilization of repository space with greatly
reduced requirements for recycle of nuclear fuel

— Deployment in symbiosis with FBRs can provide virtually
unlimited sustainabillity
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