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Generation IV Energy Conversion

• Electrical generation - Gen IV Energy Conversion Program

• Hydrogen production - Nuclear Hydrogen Initiative (NHI)
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Present US Hydrogen Consumption
• Petroleum refining

• Sulfur removal
• Opening of Benzene rings
• Breaking of long-chain 

hydrocarbons
• trends will  continue in the future, 

e.g. Athabasca oil sands
• Anhydrous Ammonia Production for fertilizer
• Chemical Industry
• 2005 US consumption:  13 million tons H2/yr  

– 95% produced by steam reforming of 
natural gas (8 % of US natural gas use) 
Releases 80 million tons CO2/yr

Replacing present US transportation fuels (gasoline, diesel, jet fuel) with hydrogen 
would require a 17-fold increase in our hydrogen production.

-Would consume >100% of our natural gas supply, or
- Would require ~500 1000-MWe power plants to provide the energy for water splitting

Liquid fuels production is rapidly 
becoming the major market for hydrogen

This can be the proverbial “chicken” for 
the Hydrogen Economy
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High Temperature Electrolysis Plant
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Porous Anode, Strontium-doped Lanthanum Manganite

Gastight Electrolyte, Yttria-Stabilized Zirconia

Porous Cathode, Nickel-Zirconia cermet
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25-cell stack used in 
1000-hour test

0.177 Nm3/hr average 
Jan. 4 – Feb. 16, 2006

2 x 60-cell stacks tested at
Ceramatec, SLC

Initial rate: 1.2 Nm3 H2/hr
final: 0.65 Nm3 H2/hr

2040 hours, ended 9-22-06
>800 hrs in co-electrolysis
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1000-hour electrolysis test, 25-cell stack
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Views of Half-Module in Operation
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Results of Post-test evaluations (ANL)

SEM image of CER11, showing delamination at the 
electrolyte-electrode interface, and over-sintering of the inner 
layer active electrode.  Both the delamination and over-
sintering can lead to short-term and long-term performance 
loss at the electrode. Apparent delamination and cracking of the air electrode 

near the sealed edge of the 25-cell stack.  The gray area at 
the top of the picture is the zirconia electrolyte.
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Delivery of Initial ILS module

Closeup of the four stacks
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Integrated Laboratory Scale experiment
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Inevitable Comparison:
Liquid hydrocarbons are very good fuels for transportation

• Liquid over range of ambient temperatures
• Pumpable: gas pump: 20 liters/min = 11 MWth

• Energy dense:  34 MJth/liter at 0.1 MPa
– H2  gas: 9.9 MJth/liter at 80 MPa,
– H2 120 MJth/kg, gasoline: 40 MJth/kg

• Storable: little loss, fire hazards understood
• Transportable by pipeline: 0.91 m oil pipeline: 70 GWth

Hydrogen will be used primarily to enhance gasoline, 
diesel and jet fuel production until the on-board storage
problem can be solved. 
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Co-Electrolysis

• Primarily a “proof-of-principle” research project
• Investigate the feasibility of producing syngas

2H2 and CO

• using high-temperature co-electrolysis of H2O and CO2

2 H2O + CO2 → 2 H2 + CO + 1.5 O2

• while taking advantage of solid oxide fuel cell technology.
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SYNTHETIC FUELS
• Nothing New About Synfuels

– Produced via the Fischer-Tropsch process

• nCO + (2n+1)H2 → CnH2n+2 + nH2O

• Discovered before WWII
• Pressure primarily determines n

• Production of Synfuels requires Syngas
– Previous H2 production releases large amounts of CO2
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Full Diesel SUV Life-Cycle Greenhouse-Gas Emissions for Crude Oil 
and Other Feedstocks with Fischer-Tropsch Conversion
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ENERGY SOURCES
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U.S. 
Biomass-
to-Ethanol 
Resource 

Base

Carbon comparison
1.3 Gt cellulose = 520 Mtc/yr

20 m bbl/d crude = 647 Mtc/yr
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Biomass to Liquid Fuels Pathways
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Conclusions
• Conventional electrolysis is available today
• High temperature electrolysis is under development and will be more efficient 
• HTE Experimental results from 25-cell stack and 2x60-cell half-module, 

fabricated by Ceramatec, 
– Hydrogen production rates in excess of 160 normal liters/hour were 

maintained with a 25-cell solid-oxide electrolysis stack for 1000 hours
– Hydrogen production greater than 800 normal liters/hour are now being 

achieved in the half-module test
– An Integrated Laboratory Scale experiment is now being build, which will 

produce about 5,000 normal liters/hour
• In the near-term hydrogen from nuclear energy will be used to upgrade crude 

and later to synthesize conventional gasoline and diesel fuel from renewable 
carbon sources

• In the long-term pure hydrogen from nuclear energy will power vehicles 
directly through fuel cells 
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Stack Internal Components
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Thermal Water Splitting Efficiencies, from Yildiz and Kazimi (MIT)
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Economic Comparison

Process Energy Source
Reactor 

Core Outlet 
Temp., °C

Process 
Max. Cycle 
Temp., °C

H2 Cost 
w/o O2 

Credit, 
$/kg

H2 Cost 
with O2 

Credit, 
$/kg

High Pressure 
Electrolysis

Gas Turbine-
HTGR 850 80 2.45$      2.29$      

Steam Methane 
Reforming* Natural Gas NA 700 1.35$      --

Steam Methane 
Reforming*

Process Heat-
HTGR 850 700 1.20$      --

Sulfur-Iodine Process Heat-
HTGR 1000 900 2.07$      1.91$      

High Temperature 
Electrolysis HTGR 1000 850 2.31$      2.15$      

source: EPRI 1009687, Oct 2004

Hydrogen Production Cost

* natural gas:$5.60/million BTU, sequestration: $4.09/MT CO2 



Herring IAEA 4-18-07  26

Energy crops

The U.S. Biomass Resource Base


