Non-Electrical Applications within Gen IV Reactor Systems

Dr. Steve Herring

Jim O'Brien, Carl Stoots, Grant Hawkes, Mike Mc Kellar, Manohar Sohal, Ed Harvego, Kevin DeWall, Doug Hall Idaho National Laboratory Joseph J. Hartvigsen, S. Elangovan, Dennis Larsen

Ceramatec, Inc.

International Conference on Non-Electric Applications of Nuclear Power: Seawater Desalination, Hydrogen Production and other Industrial Applications Oarai, Japan April 18, 2006

Generation IV Energy Conversion

- Electrical generation Gen IV Energy Conversion Program
- Hydrogen production *Nuclear Hydrogen Initiative (NHI)*

Present US Hydrogen Consumption

- Petroleum refining
 - Sulfur removal
 - Opening of Benzene rings
 - Breaking of long-chain hydrocarbons
 - trends will continue in the future, e.g. Athabasca oil sands
- Anhydrous Ammonia Production for fertilizer
- Chemical Industry
- 2005 US consumption: 13 million tons H₂/yr
 - 95% produced by steam reforming of natural gas (8 % of US natural gas use) Releases 80 million tons CO₂/yr

- Replacing present US transportation fuels (gasoline, diesel, jet fuel) with hydrogen would require a 17-fold increase in our hydrogen production.
 - -Would consume >100% of our natural gas supply, or
 - Would require ~500 1000-MWe power plants to provide the energy for water splitting

High Temperature Electrolysis Plant

Electrolysis at High Temperatures requires less Electricity

25-cell stack used in 1000-hour test 0.177 Nm³/hr average Jan. 4 – Feb. 16, 2006

2 x 60-cell stacks tested at Ceramatec, SLC

Initial rate: 1.2 Nm3 H2/hr final: 0.65 Nm3 H2/hr 2040 hours, ended 9-22-06 >800 hrs in co-electrolysis

1000-hour electrolysis test, 25-cell stack

Stack voltage and current

Herring IAEA 4-18-07 9

Hydrogen production rate

Views of Half-Module in Operation

Results of Post-test evaluations (ANL)

SEM image of CER11, showing delamination at the electrolyte-electrode interface, and over-sintering of the inner layer active electrode. Both the delamination and oversintering can lead to short-term and long-term performance loss at the electrode.

Apparent delamination and cracking of the air electrode near the sealed edge of the 25-cell stack. The gray area at the top of the picture is the zirconia electrolyte.

Delivery of Initial ILS module

INL researchers Carl Stoots and James O'Brien accept delivery of first High Temperature Electrolysis Integrated Laboratory Scale module from Ceramatec (March 21, 2007).

Closeup of the four stacks

Integrated Laboratory Scale experiment

Inevitable Comparison:

Liquid hydrocarbons are very good fuels for transportation

- Liquid over range of ambient temperatures
- Pumpable: gas pump: 20 liters/min = 11 MW_{th}
- Energy dense: 34 MJ_{th}/liter at 0.1 MPa
 - H₂ gas: 9.9 MJ_{th}/liter at 80 MPa,
 - H₂ 120 MJ_{th}/kg, gasoline: 40 MJ_{th}/kg
- Storable: little loss, fire hazards understood
- Transportable by pipeline: 0.91 m oil pipeline: 70 GW_{th}

Hydrogen will be used primarily to enhance gasoline, diesel and jet fuel production until the on-board storage problem can be solved.

Co-Electrolysis

- Primarily a "proof-of-principle" research project
- Investigate the feasibility of producing syngas

• using high-temperature co-electrolysis of H_2O and CO_2

$$2 H_2O + CO_2 \rightarrow 2 H_2 + CO + 1.5 O_2$$

• while taking advantage of solid oxide fuel cell technology.

SYNTHETIC FUELS

- Nothing New About Synfuels
 - Produced via the Fischer-Tropsch process

•
$$nCO + (2n+1)H_2 \rightarrow C_nH_{2n+2} + nH_2O$$

- Discovered before WWII
- Pressure primarily determines *n*
- Production of Synfuels requires Syngas
 - Previous H_2 production releases large amounts of CO_2

Full Diesel SUV Life-Cycle Greenhouse-Gas Emissions for Crude Oil and Other Feedstocks with Fischer-Tropsch Conversion

laho National Laboratory

Source: Charles Forsberg, ORNL, Mar 07

Process	Catalyst	Process Conditions			% conv	Product	Selectivity	
		T (°C)	P (bar)	H ₂ :CO	(CO basis)			
Fischer-Tropsch Synthesis	Fe	300-350	10-40	1.7:1	50-90% with	α-olefins	ASF -48% (max)	
					recycle	gasoline	15-40% actual	
	Co	200-240	7-12	2.15:1		Waxes	ASF - 40% (max)	
						diesel		
	Ru					Waxes		
Methanol Synthesis	ZnO/Cr ₂ O ₃	350	250-350	3:1	99% (25%		> 99% with recycle	
	Cu/ZnO/Al ₂ O ₃	220-275	50-100		max/pass – 4-7% actual/pass)	Methanol		
Ammonia	Fe/FeO + additives	430-480 (550 max)	100-500	2-3:1 H ₂ :N ₂	10-35%/pass	Ammonia	> 99% with recycle	
	Alkali/ZnO/Cr ₂ O ₃	300-425	125-300	1:1	5-20%	Branched primary alcohols		
	Alkali/Cu/ZnO(Al ₂ O ₃)	275-310	50-100	2-3:1	20-30%	Primary alcohols	30-45% C2+ 17-25% CO2	
	Alkali/CuO/CoO	260-340	60-200	0.5-4:1	5-30%	Linear primary alcohols	ASF	
	Alkali/MoS₂	260-350	30-175	1:1	10%	Linear alcohols	75-90% C2+ in liquid product	
Oxosynthesis	Co carbonyl	110-200	200-300	1:1 + olefin				
	Co – P modified	160-200	50-100	1:1 + olefin		C11-C14 alcohols		
	Rh – P modified	60-120	7-25	1:1 + propylene		C4 aldehydes	> 90%	
Isosynthesis	ThO ₂	400-450	100-1000 (300)	0.85:1	40-50%	i-C4		
	ZrO ₂	300-425	350	1:1	30%		15	
Steam Methane Reforming	Ni	850	15-30	na	100% CH₄ conversion	Syngas/ hydrogen		

Table 2: Summary of Syngas Conversion Processes and Conditions

U.S. Biomassto-Ethanol Resource Base

Million dry tons per year

Carbon comparison 1.3 Gt cellulose = 520 Mt_c/yr

20 m bbl/d crude = 647 Mt_c/yr

aho National Laborate

Million dry tons per year

Biomass to Liquid Fuels Pathways

Conclusions

- Conventional electrolysis is available today
- High temperature electrolysis is under development and will be more efficient
- HTE Experimental results from 25-cell stack and 2x60-cell half-module, fabricated by Ceramatec,
 - Hydrogen production rates in excess of 160 normal liters/hour were maintained with a 25-cell solid-oxide electrolysis stack for 1000 hours
 - Hydrogen production greater than 800 normal liters/hour are now being achieved in the half-module test
 - An Integrated Laboratory Scale experiment is now being build, which will produce about 5,000 normal liters/hour
- In the near-term hydrogen from nuclear energy will be used to upgrade crude and later to synthesize conventional gasoline and diesel fuel from renewable carbon sources
- In the long-term pure hydrogen from nuclear energy will power vehicles directly through fuel cells

Stack Internal Components

Figure 14: Comparison of the thermal-to-hydrogen efficiency of the HTES and SI related technologies as a function of temperature

Economic Comparison

Hydrogen Production Cost													
Process	Energy Source	Reactor Core Outlet Temp., °C	Process Max. Cycle Temp., °C	H ₂ Cost w/o O ₂ Credit, \$/kg		H ₂ Cost with O ₂ Credit, \$/kg							
High Pressure Electrolysis	Gas Turbine- HTGR	850	80	\$	2.45	\$	2.29						
Steam Methane Reforming*	Natural Gas	NA	700	\$	1.35								
Steam Methane Reforming*	Process Heat- HTGR	850	700	\$	1.20								
Sulfur-lodine	Process Heat- HTGR	1000	900	\$	2.07	\$	1.91						
High Temperature Electrolysis	HTGR	1000	850	\$	2.31	\$	2.15						

source: EPRI 1009687, Oct 2004

* natural gas:\$5.60/million BTU, sequestration: \$4.09/MT CO₂

The U.S. Biomass Resource Base

