

Nuclear Power for the Production of Liquid Hydrocarbons

Michael A. Fütterer

European Commission, Joint Research Centre, Institute for Energy NL-1755 ZG Petten, The Netherlands

0. Outline

- 1. Hydrocarbons: Ideal Energy Carriers
- 2. How Nuclear Can Open New Hydrocarbon Sources
- 3. Example: Nuclear Power for Aviation Fuel
- 4. Cost Considerations
- 5. Conclusions

1. Hydrocarbons: Ideal Energy Carriers

	liquid hydrocarbons	hydrogen
 Liquid between –40 ℃ and +80 ℃ even at high altitudes 	\checkmark	requires pressurization or cooling
2. Easy, inexpensive and energy efficient production, handling, storage, transport	\checkmark	high pumping power, losses through leakage and permeation, special safety requirements
3. Limited needs for new infrastructure	\checkmark	new infrastructure
4. Suitability for use in internal combustion engines	\checkmark	\checkmark
5. Suitability for use in fuel cells	√ (methanol)	\checkmark
6. Non-toxic	(in handled quantities)	\checkmark
7. High energy density per volume	\checkmark	high energy density per mass but not per volume
8. Ability to be synthesized from hydrogen and CO ₂ using heat and electricity	\checkmark	✓

Criteria for ideal energy carriers [Bossel, 2003]

Fuel	Formula	molecular weight	density	H ₂ - Density	Energy per mass (HHV)	Energy per volume
		g/mole	kg/m ³	kgH ₂ /m ³	MJ/kg	GJ/m ³
Methanol	CH₄O	32	792	99	22.7	17.97
Ethanol	C ₂ H ₆ O	46	789	103	29.7	23.45
Dimethlyether (DME)	C ₂ H ₆ O	46	666	87	31.7	21.14
Ethylmethylether	C ₄ H ₁₀ O	74	714	96	28.5	20.34
2-Methylpropane (Isobutane)	C_4H_{10}	58	557	96	49.4	27.54
2-Methylbutane (Isopentane)	C ₅ H ₁₂	72	620	103	48.7	30.17
Ethylbenzol	C ₈ H ₁₀	106	866	82	43.1	37.30
Methylcyclohexane (Toluol)	C ₇ H ₁₄	112	769	96	34.9	26.85
Octane	C ₈ H ₁₈	114	703	111	48.0	33.73
Ammonia	NH ₃	17	770	136	22.5	17.35
Hydrogen (liquid or 800 bar)	H ₂	2	70	70	141.9 120.1 (LHV)	9.93
Kerosene			817			35.74

Energy density per m³ of HC is 2-4 times greater than in liquid H₂ H₂ density in most HC greater than in liquid or compressed (800 bar) H₂

 \rightarrow Hydrocarbons are better H₂ carriers than H₂ itself

Well-to-Wheel

H₂ wastes 40% of LHV for compression, liquefaction, transport, leakage

 \rightarrow HC fuel uses much less primary energy and produces less CO₂ than H₂

H₂ today mainly produced by SMR of natural gas (premium energy carrier)

➔ prefer use of NG directly instead of conversion to H₂ unless end user has a significantly higher efficiency with H₂ than with NG

H₂ has to compete with the energy source for its production (cost, energy)

 \rightarrow Certain experts (Bossel, Olah etc.) question economic and energetic attractiveness of a H₂ economy

2. How Can Nuclear Provide New Hydrocarbon Sources ... and at the same time reduce CO₂ emissions?

Various HC can be synthesized depending on available carbon feedstock, chemical processes and desired end product.

All processes require:

- a carbon feedstock (coal, crude oil, natural gas, biomass or recycled CO₂)
- water (for the production of steam and H₂)
- (nuclear) process heat for the production of steam (and H₂ if thermochemical cycles are used for production)
- suitable catalysts
- (nuclear) electricity for process use (and for H₂ if produced by electrolysis)

Many of these processes could use the "Syngas Route"

a) From carbon feedstock and water:

 $\begin{array}{l} C(s)+H_2O(g) \not\rightarrow CO(g)+H_2(g)\\ \textbf{b) From carbon feedstock, oxygen and water:}\\ 2\ C(s)+\frac{1}{2}\ O_2(g)+H_2O(g) \not\rightarrow 2\ CO+H_2\\ \textbf{c) From carbon-dioxide and hydrogen:}\\ CO_2(g)+H_2(g) \not\rightarrow CO(g)+H_2O(g)\\ 2\ H_2O \not\rightarrow 2H_2+O_2 \end{array}$

 $\Delta H^{\circ} = +131.3 \text{ kJ/mol}$ (high temperature)

"Shell entrained gasifier"

 $\Delta H^{\circ} = +41.2 \text{ kJ/mol}$ from electrolysis or thermochemical

Example: Methanol Synthesis

1. Syngas production

Coal is brought to high temperature through combustion and is then exposed to steam.

 $C(s) + H_2O(g) \rightarrow CO(g) + H_2(g)$ $\Delta H^\circ = +131.3 \text{ kJ/mol (high T)}$

2. H₂/CO adjustment

1 CO and 1 H₂ are coming from the syngas, the second required H₂ comes from the WGS:

 $CO(g) + H_2O(g) \rightarrow CO_2(g) + H_2(g)$ $\Delta H^\circ = -41.2 \text{ kJ/mol}$

3. Hydrocarbon synthesis

 $CO(g) + 2 H_2(g) \rightarrow CH_3OH(I)$

 ΔH° = -90.6 kJ/mol, \approx 250°C, 5-10 MPa, now with new catalysts down to RT

4. Overall reaction

 $3C(s) + 4 H_2O \rightarrow 2 CH_3OH(I) + CO_2(g)$

CO₂ release from methanol synthesis could be reduced or eliminated by:

step 1: heating the coal with nuclear process heat instead of coal combustion; step 1: producing the steam with nuclear heat; step 2: using nuclear-produced H₂ instead of the WGS to reach H₂/CO = 2.

Example: Methanol from fossil CO₂ and nuclear H₂

Direct conversion of a CO_2/H_2 mixture to methanol. Acts as a CO_2 "sink".

 $CO_2 + 3 H_2 \rightarrow CH_3OH + H_2O$

Various temperatures, pressures and catalysts are used:

- High pressure 30–35 MPa, 320–380 °C, ZnO/Cr₂O₃ catalyst
- Medium pressure 10–15 MPa, 230–260 ℃, CuO–ZnO–Cr₂O₃ catalyst
- Low pressure 5–10 MPa, 240–260 ℃, CuO–ZnO–Al₂O₃ catalyst

This process can also be established in a reversed fuel cell.

- Production of HC consumes large amounts of water that needs to be available, desalinated where necessary, and purified.
- The use of nuclear power to produce syngas or syngas products from coal would save 1/3 of coal resources and would lead to an equivalent reduction in CO₂ emission.
- Nuclear power would enable coal-to-liquid processes without CO₂ rejection.
- Nuclear power can even act as a CO₂ sink and fully recycle CO₂ to liquid hydrocarbons.
- CO₂ from fossil fuel combustion can be employed as a valuable carbon feedstock.
- CO₂ recycling potentially makes CO₂ sequestration superfluous.

3. Example: Nuclear Power for Aviation Fuel

Classical coal-to-liquid processes are extremely dirty:

1. Similar amounts of coal and water are needed to produce similar amounts of ethanol and CO₂.

168 t coal + 176 t water \rightarrow 150 t ethanol + 144 t CO₂ (+ 50.6 t ash)

2. The mass of waste (CO_2 and ash) together is almost a third more than the product (ethanol) itself.

Production of ethanol for a single 150 t fuel load/day would:

	Classic Coal Liquefaction	Coal Liquefaction with CO ₂ Recycling	CO ₂ feedstock
consume carbon	117.4 t ≈ 168 t raw coal	78.3 t ≈ 112 t raw coal	0
consume H ₂	0	19.6 t	39.12 t
power equivalent for H_2 production (40% efficiency), LHV = 120 MJ/kg H_2	0	68.1 MWth	136.1 MWth
produce CO ₂	143.5 t	0	(- 287 t)
produce ash	50.6 t	33.7 t	0
consume water (incl. for H ₂ prod.)	176.1 t	176.1 t	176.1 t

Conclusions for an airport consuming the *mass equivalent* of 50 B747 fuel loads of ethanol per day (50×150 t/d):

- Pure CTL: CO₂ production (> 14,000 t/d) imposes CO₂ recycling with large quantities of H₂. CO₂ release equivalent to 2.43 GWe coal-fired power plant. Coal use corresponds to 50 × 168 t/d × 33.3 MJ/kg = 3.24 GWth, Ethanol production corresponds to 50 × 150 t/d × 26.74 MJ/kg = 2.32 GWth.
 → Conversion efficiency: 2.32 GWth/3.24 GWth = 71.7%.
- **CTL with CO₂ recycling:** fuel production itself is CO₂ neutral, no sequestration required. CO₂ is used twice before emission. The liquefaction complex for this airport with CO₂ recycling would consume the water of a town of 63,000 (140 l/person-day).

Coal used corresponds to $50 \times 112 \text{ t/d} \times 33.3 \text{ MJ/kg} = 2.16 \text{ GWth}.$

Ethanol production corresponds to 50×150 t/d $\times 26.74$ MJ/kg = 2.32 GWth.

Nuclear power used 3.41 GWth (approx 6 HTRs of 600 MWth each) for H₂, for water cleaning, process steam, electricity

→ Conversion efficiency: 2.32 GWth/(2.16 GWth + 3.41 GWth) = 41.7%.

• **CO₂ feedstock:** Power requirements for H₂ production double against coal liquefaction with CO₂ recycling. If centralized, a very large fossil-fired power plant (2.16 GWth or 972 MWe) would need to be in the neighborhood of the liquefaction plant in addition to a nuclear complex of 6.8 GWth. If decentralized smaller fossil plants could be twinned with nuclear reactors of approx. three times their thermal power.

→ Conversion efficiency: 2.32 GWth/6.8 GWth = 34%.

→ Conflict between energy efficiency and CO₂ emission

4. Cost Considerations

US military study: CO_2 extraction from air with nuclear synfuel production for maritime transport and aircraft carrier-based fighter planes would lead to liquid hydrocarbon at < 3.67 \$/gal.

These numbers are so positive that they require verification!

Factors for cost reduction:

- use of flue gas instead of ambient air
- thermochemical H₂ production with HTR technology instead of electrolysis from LWR electricity
- CO₂ credit

Cost in	Coal-to-Liquid		CO ₂ from fossil power plant		Atmospheric CO ₂	
[US\$/gal]	LWR	HTR	LWR	HTR	LWR	HTR
Fuel cost without CO ₂ credit (30 \$/t)	2.36	2.06	3.31	2.75	3.67	N/A
Fuel cost with CO ₂ credit (30 \$/t)	1.61	1.32	3.02	2.46	N/A	N/A

Synthetic liquid hydrocarbon cost as a function on carbon feedstock and production method for a fixed charge rate of 5% [Locke Bogart, 2006]

Price for mechanical energy

	Synthetic kerosene*	Diesel**	Electricity*** (household)
Price	3.31 \$/gal = 0.665 €/l	1 €/I (at pump)	0.196 €/kWh
Energy density	9.93 kWh/l	10.1 kWh/l	
Conversion efficiency	30%	30%	85%
Price of mechanical energy w/o tax	0.223 €/kWh		
Price of mechanical energy w/ tax	0.294 €/kWh (tax = 0.7 €/l)	0.33 €/kWh	0.231 €/kWh

1 € = 1.315 US\$

*: fossil CO₂, LWR H₂, no CO₂ credit

**: price quoted for December 2006 in the Netherlands

***: price quoted for January 2006 in the Netherlands

Price for synthetic liquid hydrocarbons including tax comparable to fossil Diesel. No tax loss for governments.

5. Conclusions

- Huge potential for nuclear-produced syngas, methane or liquid hydrocarbons: chemical industry, trucks, aviation, ships. Massive deployment of NPP would require FBR and the Th-U fuel cycle.
- Policy choice is overdue between a synthetic hydrocarbon economy and a hydrogen economy. H₂ is still politically attractive due to its *apparent* cleanliness and simplicity, it is challenging technically, energetically and economically.
- Hydrocarbons appear as the more realistic option for short- and mid-term CO₂ reductions. Existing infrastructure for liquids and gas. But: Encourages fossil fuel burning (for CO₂ recovery) and continued use of low-efficiency combustion engines like for cars (20-30%) which could run more efficiently on cheaper (nuclear) electricity.
- Nuclear-assisted HC enable reducing CO₂ emissions and avoid technically risky and expensive CO₂ sequestration. The quoted economic assessment requires verification. It suggests that synthesis of liquid hydrocarbons from flue gas and nuclear hydrogen would lead to cost of mechanical energy that is more stable and very similar to what is paid today for mechanical energy from fossil fuel.
- There is a conflict between energy efficiency, CO₂ emission reduction and economy. The amount of a future CO₂ tax is decisive for finding the economic optimum.

